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I. INTRODUCTION

One of the basic structural elements used for exterior skin
surfaces of flight vehicles is the flat rectangular panel. The flutter,
or dynamic instability, of such panels when exposed to a supersonic
flow has received considerable attention since the appearance of the
pioneering works of Hedgepeth (ref. 1) and Movchan (ref. 2).

A. Elastic and Inertia Considerations

Most papers in the literature have dealt with homogeneous
isotropic and orthotropic panels. However, high-efficiency structural
configurations for supersonic vehicles may incorporate sandwich type
panels having lightweight orthotropic cores such as honeycomb. Such
panels often exhibit properties which are not accounted for by classi-
cal plate theory. The primary difference between a homogeneous and a
sandwich type panel is that the sandwich panel may experience signifi-
cant transverse shear deformations due to the lightweight (low
stiffness) cores that are often used. In homogeneous panels, this
shearing deformation is usually negligible.

The first analytic work dealing with the flutter of sandwich
panels appeared in 1964 in a report by McElman (ref. 3). This analysis
dealt with simply supported flat and cylindrically curved sandwich
panels for which a two-term (mode) Galerkin solution was obtained. In
the case of homogeneous panels, this type of solution was known to give
qualitatively correct trends, but was not adequate (using only two
modes) to predict reliable quantitative results (ref. 1). One of the

qualitative results of reference 3 was that the transverse shear



flexibility of an isotropic core could significantly reduce the
dynamic pressure required for flutter.

In 1965 an exact closed form solution was published by Anderson
(ref. 4) for the flutter of a flat rectangular, isotropic sandwich
panel having simply supported or clamped leading and trailing edges and
simply supported side edges. This investigation confirmed the signifi-
cance of the isotropic core shear flexibility and showed that the two-
mode Galerkin solution of reference 3 became progressively less accurate
as the core shear flexibility increased. The theory developed in
reference 4 was employed in reference 5 where numerical results for a
wide range of panel parameters were presented for the simply supported
edge condition.

The numerical results obtained in references 4 and 5 indicated
that the panel theory upon which they were based might be inadequate
for certain ranges of parameters. These results showed that under
certain conditions involving finite core shear stiffness, an increase
in shear stiffness or boundary restraint would cause the dynamic pres-
sure required for flutter to be reduced rather than increased. Because
of these unexpected results, it was suggested that a more refined
theory describing the panel motion might be necessary. For instance,
one of the assumptions of the panel theory used in reference 4 is that
the faces behave as membranes (i.e., the face sheet bending stiffness
is neglected). Consequently, the governing differential equations turn
out to be sixth rather than eighth order, with a resulting loss of one
boundary condition per panel edge. An additional refinement in the

theory, suggested in reference 5, would be to account for the rotary



inertia. The inclusion of either the transverse shear flexibility or
the rotary inertia in the analysis will lower the in-vacuo panel bend-
ing frequencies. The simultaneous inclusion of both the shear flexi-
bility and the rotary inertia, while still affecting the bending motion,
will also admit two additional motions. These motions, which were
described in reference 6 for a homogeneous isotropic plate, are termed
the thickness-shear and thickness-twist modes. In general, both of
these motions produce transverse deflections (perpendicular to the panel
surface) and influence the aerodynamic loading. The question is whether
these additional motions can significantly alter the flutter solution.

The first consideration of the effects of the face sheet bending
stiffness was presented by Smirnov in references 7 and 8 for a sandwich
beam and panel, respectively. Unfortunately, the flutter analysis of
the panel was based on an incomplete differential equation and the solu-
tions presented are correct only for special cases.

Flutter boundaries for sandwich panels having orthotropic shear and
bending stiffnesses have been presented by Weidman (ref. 9) for a simply
supported panel. As in reference 3, this analysis is based on a two-
mode Galerkin solution and gives only qualitative trends.

B. Aerodynamic and Damping Considerations

As in references 1, 3, 4, and 5, the flutter analysis presented
herein neglects all damping forces and is based on a simple two-
dimensional statie, inviscid approximation for the aerodynamic forces.
In this approximation the aerodynamic loading is proportional to the
instantaneous slope of the panel taken in the direction of the airflow.

The analyses of references 2, 7, and 8 are based on a two-dimensional



quasi-steady aerodynamic approximation. This has the same mathematical
form as the static approximation except for an additional term which is
proportional to the panel's transverse velocity and represents an aero-
dynamic damping force. Flutter boundaries based on these static and
quasi-steady aerodynamic theories have recently been compared with
results obtained from linearized three-dimensional, unsteady, inviscid
{exact) aerodynamic theory (refs. 10 and 11).

For unstressed homogeneous panels, all three theories predict
nearly the same flutter dynamic pressure for Mach numbers greater than
about 1.6 and for length-width ratios from 0 to at least 6. For Mach
numbers less than 1.6 and for length-width ratios less than about 2, the
"exact" theory predicts significantly lower flutter dynamic pressures
than the other two theories. These lower values are due to a so-called
single-degree-of-freedom instability and are very sensitive to struc-
tural damping. (The other two theories do not predict this type of
instability.) For these low Mach numbers all three theories tend to
predict flutter boundaries that disagree with experimental results.
This disagreement is apparently due, in part, to the stabilizing effect
of the turbulent boundary-layer that occurs in this range of Mach num-
bers and length-width ratios (refs. 12 and 13). For the higher Mach
number range (greater than 1.6) where the theoretical results agree,
there is also fairly good agreement with experimental results (obtained
at Mach numbers from 2 to 5 and length-width ratios from 0 to 10,
ref. 11). For panels that are unstressed or are in tension, the results

presented in references 10 and 11 also indicate that, for the higher



Mach number range, the flutter boundaries are insensitive to either
structural or aerodynamic damping.

For compressively stressed, unbuckled panels, the results of
references 10 and 11 indicate that for Mach numbers greater than about
1.6, the quasi-steady and exact theories predict flutter dynamic pres-
sures that compare very satisfactorily. The static aerodymamics also
gives essentially the same results except when compressive stresses
cause the in-vacuo values of two bending frequencies to become equal.
When this occurs, a zero-dynamic-pressure flutter point is predicted by
the static aerodynamics. If the stress levels producing these equal
frequencies are less than the buckling stress, then the quasi-steady and
exact theories predict small but nonzero flutter values of dynamic
pressure. (The zero points predicted by the static theory are prevented
by the aerodynamic damping.) However, even these nonzero flutter
dynamic pressures significantly underestimate experimental results
(ref. 11). 1Im fact, when an equal-frequency stress level coincides with
the transition-point value of stress (buckling point of the flutter
boundary) even the quasi-steady theory predicts zero-dynamic-pressure
flutter (ref. 10, figs. 4 and 5).

In reference 10 it is shown that reasonable quantitative agreement
between theory and experiment can apparently be obtained near equal-
frequency stress-level conditions, by the use of quasi-steady aerody-
namics, if a structural damping term (gB) associated with the panel
bending stress is included in the analysis. In this approach the zero-
dynamic-pressure values for transition-point flutter do not occur. The

reason for this behavior is not completely clear though since the



further addition of a structural damping term (gM) associated with
stresses produced by in-plane loads gives, for gg = &y flutter bound-
aries which again have zero-dynamic-pressure values for transition point
flutter.

To recapitulate, except for cases where compressive stresses cause
two in-vacuo bending frequencies to have nearly the same value, the
simple static aerodynamic approximation gives nearly the same results
as the quasi-steady and "exact' aerodynamic theories for Mach numbers
greater than about 1.6. It seems likely then that the results presented
herein would not be significantly altered, in most cases, by the use of
the more refined aerodynamics. For those cases of nearly equal in-vacuo
bending frequencies, however, it would be appropriate to supplement the
present analysis with a consideration of damping forces.

C. Scope and Purpose of Investigation

In this investigation an analysis is presented for the supersonic
flutter behavior of flat rectangular, biaxially stressed sandwich
panels. The mathematical model of the panel accounts for the bending
stiffnesses of dissimilar face sheets, rotary inertia, and the ortho-
tropic transverse shear stiffnesses (moduli) of cores such as honeycomb.
In the absence of damping forces, for simply supported edges parallel to
the airflow, and for the static aerodynamic loading approximation, an
exact closed form solution to the problem is obtained for panels with
either simply supported or clamped leading and trailing edges. The
purpose of the investigation is to determine the effects and importance
of the face bending stiffness, rotary inertia, and core shear stiffness

orthotropy on the panel's flutter behavior.




ITI. ANALYSIS

In this chapter the problem is defined and solved. The solution
is found to take on different forms according to whether the panel has
an orthotropic or isotropic core, or whether the length-width ratio is
zero {beam behavior).

A. Panel Configuration and Differential Equations

The panel configuration and coordinate system are shown in
figure 1. The panel is flat and is of length a and width b. The
panel is subjected to uniform, constant magnitude in-plane force resul-
tants Ny and Ny (positive in compression). The in-plane shear force
resultant, ny, is assumed to be zero. At Mach number M, the flow is
over one surface of the panel, is parallel to the x-axis, and is
supersonic. Simply supported edges are assumed at y = 0 and y = b.

The core is of uniform thickness and may possess orthotropic,
transverse shear stiffnesses (DQX, DQy). Its planes of orthotropic
symmetry are parallel to the coordinate planes. The face sheets are
isotropic but need not be identical (modulus, density, and thickness may
differ but Poisson's ratio is assumed to be the same for both faces).
The geometry of the core and face sheets is illustrated in figure 2.

The quantities dj, dy, or  locate the elastic axis. Stiffness and
inertia properties are given in table I of appendix A.

The extensional stiffness of the core is assumed to be much less
than that of the face sheets (i.e., the core contribution to the overall
panel bending stiffness is neglected). Also, transverse shear strains

in the faces and all normal strains in the =z-direction are neglected.



Figure 1:-

Panel configuration and coordinate system.
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Figure 2.- Geometry of panel faces and core.



The panel face sheets are considered to be thin plates rather than
membranes; thus, their bending stiffness contributes to the equilibrium
of forces in the z-direction (V%w term in eq. (la)).

For the configuration described, an appropriate set of differential
equations of motion can be obtained from either of the sandwich panel
theories presented in references 14 and 15. This is done by incorpor-
ating the effect of face sheet bending deformations in the sandwich
panel theory of reference 14, or by incorporating the effect of ortho-
tropic core shear moduli in the theory of reference 15. With these
modifications, and with the addition of rotary inertia terms (see
appendix A), both theories yield the following equations of motion.

For equilibrium of forces in z-direction:
-(Df, + DEIVHW - Nxw o - NyW s+ 2Ny Wy U, * Qy’y +p=0
(1a)

For equilibrium of moments about y- and x-axes, respectively:

Qx 1

1-p
Woxyy TV, xxx DS'FDQ [Qx,xx ) Qx,yy]
X

Q I Q
N l+2u _g:X_Y,Lb_O_ <w __X> =0 (1b)
Qy S tt

1-u ]
w w -= = e
syxx Tyyy D Dq, [Qy,yy 7 Y,

Qx I Q
Pl o <w _Y> S0 (19
Qx s tt

10



For equilibrium of forces in x- and y-directions, respectively:

_Nx,x + ny,y =0 (1d)
—Ny’y + NXY,x =0 (1e)
where
Dfl’DfZ bending stiffnesses of face sheets 1 and 2, respectively
QX,Qy transverse shear forces, per unit width
w transverse deflection
P transverse pressure loading
Dg panel bending stiffness due to the extensional stiffnesses of
the face sheets
u Poisson's ratio of the faces (assumed equal for both faces)
t time
I, mass density moment of inertia, per unit width, of the face

sheets about the elastic axis

In equations (1d) and (le) the in-plane inertia has been neglected.
The last term in each of equations (1b) and (1lc) represents the rotary
inertia moment about the elastic axis.! It is assumed that the
z-coordinates of the elastic axes and the centers of mass coincide.
This condition is satisfied if the face sheets are of identical material,
or if they have equal ratios of Young's modulus to density, Eg/pge. (If
this condition is not satisfied, equations (1b) and (lc) couple dynamically

with equations (1d) and (le), respectively (see appendix A).)

1A recent flutter paper, in which the rotary inertia moments are

incorrectly expressed, is discussed in appendix B.
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The assumptions ny = 0, Nx = constant, and Ny = constant satisfy
the in-plane equilibrium equations, (1d) and (le), and eliminate the
term ZNX},w’Xy from the lateral equilibrium equation (la). The
unknowns, to be determined from equations (la, b, c), are the lateral
deflection w(x, y, t) and the two shear angles Qx(x,y,t)/DQx,
Qy(x,y,t)/DQy (see eq. (Al)). The internal transverse shear force
resultants Qx and Qy are depicted on the imagined panel cutout of
figure 1.

The transverse loading p(x, y, t) is comprised of the inertia
force and the pressure due to supersonic flow. The aerodynamic loading

is assumed to be given by two-dimensional static aerodynamics so that

(ref. 1)

2
P = —pmw,tt - % W,X (2)

where q 1is the dynamic pressure, B = 2.1, and P is the panel's
mass per unit surface area.

B. Boundary Conditions

Equations (la, b, and c) constitute a system of eighth order
partial differential equations in the spatial coordinates x and y.
Corresponding to these equations are four boundary conditions which must
be specified at each edge of the panel. Sets of boundary conditions
consistent with the assumptions upon which equations (1) are based can
be obtained from references 14 and 15. The boundary conditions used

herein, in terms of the unknowns w, Qx/DQ , and Qy/DQ , are given below.
X Y

12



Simply Supported Edges Clamped Edges

at x = 0 and a at x=0 and a
w=20 w=20 (32)
Q Q
Yoxx TTL£ v - ﬁng =0 Wx~ $§£'= 0 (3b)
s QX Yy Q}’ > QX
w,xx + uw,yy =0 w’x =0 (3c)
Q
wy-b—y=o wy-3QL=o (3d)
> Qy > Qy

For the simply supported case, equation (3b) specifies that no
moment couple is produced by the face sheet axial loads (whose resultant
is Ny). Equations(3c) specify that no net moment is acting on the
individual face sheets. For the clamped condition, equations (3c) spec-
ify a zero edge slope; hence, equations (3b) correspond to a zero shear
angle in the x-direction. (Equations (3c) arise because the face
sheets are treated as thin plates rather than membranes as was done in
refs. 3, 4, 5, and 9.)

Since equations (3a) are true at all points of the boundaries

parallel to the y-axis, w , and w, are also zero at x = 0 and a.

sy Yy
This, together with equations (3c), allows the boundary conditions to be

written as follows.

13



Simply Supported Edges Clamped Edges

at x =0 and a at x =0 and a

w=o0 w=20 (4a)
w,xx =0 wx =0 (4c)

yy=D%’;=o yy=b%y;=o (4d)

Note that equations (4d) specify a zero shear angle in the
y-direction. (See appendix A for the interpretation of the shear
angles.) The boundary conditions at y = 0 and b are obtained from
equations (4) by interchanging x and y.

Along the edges x = 0 and a, the boundary conditions corresponding
to equations (1d) and (le) require that (ref. 15): (1) either Ny is a
prescribed value or the translational displacement in the x-direction
is zero; (2) either ny is a prescribed value or the translational
displacement in the y-direction is zero. (The boundary conditions at
y = 0 and b are obtained by interchanging x and y.) As noted earlier,
the loads N, and Ny are assumed to be prescribed and the load Nxy is
assumed to be zero. If Ny and Ny are prescribed then the in-plane
displacements will, in general, be nonzero. Uniform values of Ny and
Ny could also be developed by uniform heating of the panel, in which

case the in-place displacements could be zero.

14



C. Solution of Differential Equations for

Simply Supported Streamwise Edges

As in references 4 and 5 the solutions to equations (1), which
satisfy simple support boundary conditions at y = 0 and y = b, are

sought in the form

A

m. (x/a) .

wix,y,t) = :E: Aje J sin E%X-elwt

J
m. (x/a) .
_ J . nmy 1wt (5)

Qx(x,y,t) = :?: Bje sin —=e
. (x/a) .

_ ] nny 1wt
Qy(X,}’,t) = J CJe COS —-—b e

The circular frequency is denoted by w, and n is an integer
designating the number of half-sine waves that can form in the
y-direction.

The ﬁ5 are nonrepeated roots of the characteristic equation and
are to be determined. As will be seen, the characteristic equation has
eight roots, thus giving 24 values for the coefficients Aj’ Bj’ and Cj
(7 =1 to 8). However, the coefficients Aj, Bj’ and Cj are not all
independent quantities since they are related by the three differential
equations in w, Qx, and Qy' Hence, one coefficient, say B., can be
expressed in terms of the other two (Aj and Cj) for each value of j.
These eight coefficients (B; to Bg) are then determined, within an
arbitrary constant, by the eight boundary conditions (four at x = 0
and four at x = a).

Substituting the above expressions for w, Q and Qy into

equations (1), and letting

15



— _‘ W ~ T
ay; Z3 -n Aj 0
_zj[nz(nz-xmz)—zjz-] n2_rx[Z§_(l;_“)n2n2+n2x52] z5 (1;1) nr, :3‘;25 BjV=({ 0
—n[nz(nz—x&'z)—z?] -zj(lzu) nr, 1- y[(%g)(f#_')z_nzﬂmz] ::Jbs Cy 0

L _ / L.J

(7)

where

) A

252 - 3 2 (8)

_ T 2.2 _ 2 202k - koz?

Thus, those values of zj which satisfy the determinant of the 3 by 3

matrix will determine the nontrivial solutions to the differential

equations.

The dimensionless parameters appearing in equations (7) and (8) are

defined as

\
_a . Df1 + sz

n=3 = T Ds

Nyb2 N, b2
kx = > ky = _l__

T2Dg m2Dg

2 2

v DS v DS
T = T = > (9)
X 2 2

b DQx Y b DQy

3 2 D

A = 2ab wo= T /IS

BDs ° b P
X - '[]‘2 k). a‘ = i

EZ m Wo J
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The quantity n is the panel's length-to-width ratio, ky and ky are
measures of the in-plane loads, ry and Ty reflect the core shear
flexibilities, A characterizes the dynamic pressure, and X character-
izes the rotary inertia. The ratio designated by T is a measure of
the face sheet contribution to the transverse restoring forces and w
characterizes the panel frequency.

The parameters appearing in equations (9) are all defined in terms
of the panel width, b. For length-width ratios n > 1 this is a conve-
nient form, but for n < 1 it is more convenient to define all param-
eters in terms of the panel length a. So, for n < 1 the following

primed parameters will be used.

Nxa2 )
k! = = n2k
x WZDS X
2
o Nya - 2K
Yy TI'ZDS Yy
2p T'x
=Tt X
X" a?2p 2
Qx 1

2qa
A= é%s = An3 ' (10)
1 “2 DS Wo
Wo = 5 /5~ 3
a m q
p— w 2—
w' = — = n‘w
Wo
wr =12l x
a2 Pp 2
272 ! to2 2 !
ail = -T[(nn)2 - Zj] + (nn)zky -~ kxzj + @' - ;3 zj = n2a11J

It is noted that n?2(n? - X@w?) - z? appears as a common factor in

the coefficients of Aj for both the second and third rows of

17



equation (7). Also, n appears as a common factor in the coefficients

of Cj for both the first and second rows of equation (7). This
enables equation (7) to be written as
— ] (
aj ! z , -n ( Aj; \ OW
|
(Z 2,241 2 l+u ! ) : x|+22(l+u)(ry ) : 0 a3BJ Jod
-n‘n 1 -X3+zi |5 - l < =
2 Yy : J "3\ 2 Xy : 1T3Ds
: . ' asC.
0 I -nnX; | z-y! ——d 0
- ] J : J {J \W3DS
(11)

where

Z2 1
< 2_?1;11_-—'2]: 2. 23w o2l 4
J~1+1~ [(nn zJ) 5 ~X'w l+r, [{n . 5 ~XWw X

2
Z-
X'ar' | = 2. 2DV 1w 2l oy
yj-l+r [11 -z% ) ] 1+ry[61 . ) 7= ~X© ] Y;

The characteristic equation defining the quantities ﬁ5 = MZj is

obtained by equating the determinant of the square matrix in equa-

(12)

tion (11) to zero. The form of the characteristic equation varies
according to whether the core is orthotropic, isotropic, or whether the

length-width ratio is zero.
1. Orthotropic Core (r, # ry) with n > 0. In this case the

characteristic equation is

a11 '~ (l+u>(

12, 1+
[ -(nn) 2+ x "%’ U>ry 11][2 Y5~ - (nn) %x. ]-O (13)
Since a{l contains z;, and x} and yj each contain z?, equa-

tion (13) is an eighth-order polynomial in zj. Thus, eight values of

ﬁ3 will appear in equations (5).

18



2. Isotropic Core (ry = r,) with n > 0. For Ty = r; = r', the

1

expressions X and y} are equal and equation (13) factors into

.2 2
[ai1 - (z? - n%n? + Xu' ) (r'a); + 23 - nznz)]y; =0 (14a)

The six roots of Z; given by the bracketed term depend on A' (dynamic
pressure). However, the two roots (to be designated 2z and zg) given

by

v ot 2_22 l'U) l_"2= ] =
y; =1 e[z - n2n?) (35 sx@?] =0, j=7,8 (14b)

are independent of A'.
3. Beam Behavior (n = 0). Equation (13) also factors when n = 0
(infinitely wide panel of length a). However, it is more instructive

to return to equation (11) and set n equal to zero there, giving

- , . o | a) ‘
a; ! Zj : 0 Aj 0
1
3
| 1 a“B.
2 =t v i _1+1.l ey 1% -
zJ(zj+X w5 Ty, 11) | Xj*z3 — (ry y) | 0 Tr3DS 1 O (
. T 0o a2 |
: l A ACETN
(15)
so that
Ly_k'22+_'2 A_'_ Z A
TTEITRXEGTRT T T % J
_ 1 2 1—1.1 '—'2>] =
[1 ry<zj 7 *Xw °ouY
_ 2 2
_zj(z§+x'w'2) —[l—r;((zj+X'U' ]

The determinant gives a sixth-order polynomial in z: from which

J

six roots (j = 1 to 6) can be determined. The bracketed term then gives

: and B.

z;: for j =7 and 8. From equation (15) it is seen that AJ j

J
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are related but are independent of Cj. The 2 x 2 determinant
corresponds to a "beam'" solution since the same determinant is obtained

by substituting the expressions

5 m, (x/a) -
w(x,t) = Z Aje J(X a)elwt

j=1

6 m. (x/a) .
Qx(x,t) = Z Bje J elwt

j=1

into the differential equations for the cylindrical bending of a beam
(eqs. (la) and (1b) with all terms involving derivatives with respect to
y set equal to zero).

D. In-vacuo Frequency Equations for All Edges Simply Supported

For no airflow (A' = 0) the differential equations and simple

support boundary conditions are satisfied by

1 3\
w(x,y,t) = Ay sin Egi-sin E%X-elwt
Qx (x,y,t) = Bpy cos E—Z—isin E%X-elwt r (17)
B . mmX nry iwt
Qy(x,y,t) = Cpn sin — Cos e

where m and n are integers designating the number of half-sine waves
that can form in the x- and y-directions, respectively. When equa-
tions (17) are substituted into equations (1), with q = 0, the
characteristic equations (13), (14), and (16) are again obtained except
that A' = 0 and z% = -m?2. Thus, the characteristic equations become

J

"frequency equations" from which w? can be obtained.
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1. Orthotropic Core. The ''frequency equation' form of
equation (13) (orthotropic core) is cubic in 2. However, for X = 0
(rotary inertia neglected) simplification occurs and the bending fre-
quency of the m, n mode is given by

2

&2 = [(%)2 . nz]z(T - c) . [(%) ky + n2ky] (18a)

where

1-u [(m/n)2 +n2]2
[l +( 2 )rxr}’ [I‘x(m/ﬂ)z +n2ry]

[re e - )

Equation (18a) includes the effects of length-width ratio, face sheet

. =[rx(§)2 . nzry]

(18b)

bending stiffness, orthotropic core shear flexibility, and in-plane
stress. For 1 = 0 {(face bending stiffness neglected) and ry = Ty
(isotropic core) the above result reduces to equation (C4) of
reference 5.

2. Isotroptc Core. For the isotropic core, equations (14a) and
(14b) yield two frequency equations (if both the rotary inertia and

shear flexibility terms X and r, respectively, are retained). Replacing

z% with —m2 in equation (14b) yields

J
®2 = %[% + (l—;i—)(:—i- + nz)] (19)

This equation gives the frequencies of the ''thickness-twist'" modes.
These are free modes of vibration which, for a simply supported panel
with an Zsotropic core, occur without any transverse deflection

[w(x,y,t) = 0]. The frequencies (w, not @) given by equation (19) are
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independent of the in-plane loads (ky and ky), the face bending
stiffness (1) and the mass per unit surface area (pp). The reason is
that the transverse forces arising from the in-plane loads, face bend-
ing deformations, and lateral inertia are zero when w(x,y,t) = 0 for
all x and y (see eq. (la)).

Except for differences in notation and interpretation of stiffnesses,
equation (19) agrees with the second of equations (10) in reference 6.
(The stiffnesses must be interpreted differently because reference 6
deals with a homogeneous plate in a manner analogous to the Timoshenko
beam theory.) Sketches of thickness-twist mode shapes for n = 1 and
n = 0 are shown in figures 3(a) and 3(b), respectively. As pointed out
in reference 6, the two shear angles Qx/DQ and Qy/DQ are so related as
to cause the panel (n > 0) to twist about a normal to its surface. The
equations for these mode shapes have been derived for X > 0 (eqs. (61)
and (81)) and are found to be independent of the airflow. This is
because w(x,y,t) = 0; hence, on the basis of the aerodynamic theory
employed, no aerodynamic forces are produced. (This is not necessarily
so for other boundary conditions or for a panel having an orthotropic

core.)

The second in-vacuo frequency equation for the isotropic core is

obtained from the bracketed portion of equation (l4a) by setting '=0
and z? = -m°. This equation is quadratic in @2 and yields
2[B2+(TR2- 1418
2 [B<+(tB--p) (1+rB)] L (20a)

[+ @O BT (B2 + /[ (10 BrX (1) | 244

where

22



(a) Thickness-twist mode; square panel, isotropic

core, m = n = 2.

{(b) Thickness-twist mode; section of infinitely
wide panel, m = 2.

Figure 3.- In-vacuo mode shapes for simply supported edges.
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b

(20b)
2

m
(7) ke v n%

° y

It is shown in appendix C that both sets of mode shapes corresponding
to these two sets of frequencies involve bending and shearing deforma-
tions for which w(x,y,t) # 0. Thus, both sets of modes induce an
aerodynamic loading that may lead to flutter.

For convenience, the frequencies given by the smaller solution for
w2 (i.e., +/ ) are referred to as the 'bending'" set of frequencies
because for r = X = 0 (shear flexibility and rotary inertia neglected)
they reduce to the frequencies of the pure bending solution given by
classical plate theory. The larger solution for &2 (i.e., -V )
gives the frequencies of the '"thickness-shear' set of modes (described
in ref. 6 for kyx = ky = 0).

Additional information on these two sets of modes is given in
appendix C where approximate bounds on the ratio of shear angle to total
slope (yx/w’x) are derived for a simply supported beam. The results
indicate that the shear angle Yx is larger than the slope Wox for
the thickness-shear modes, whereas for the bending modes v, 1is less
than W The resulting forms for the bending and thickness-shear mode
shapes are illustrated in figures 3(c) and 3(d), respectively.

The in-vacuo frequency equations given by (18), (19), and (20) are
extremely useful for the rapid estimation of frequency ranges of

interest in the numerical computation of frequency loops (variation in
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1 Qx = yx = 0.5W,y

(c) Bending mode of sandwich beam; m = 2.

Z, W

Ax=—W, x
)’x )’x=2W7x

|

- - ——a— R m———

(d) Thickness-shear mode of a sandwich beam; m

Figure 3.- Concluded.

2.
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A with ®2). These equations can also be used for the in-vacuo beam
frequencies by rewriting them in terms of the primed parameters (see
eqs. (10)) and letting n = O.

Equations (19) and (20) reveal that neither the thickness-twist nor
the thickness-shear frequencies are predicted if either of the rotary
inertia or shear flexibility terms (X and r, respectively) is neglected.
The existence of the motions associated with these frequencies is due to
the combined influence of the shear deformations and the inertia moments
caused by rotational acceleration.

E. Expansion of Characteristic Equations

in Powers of zj

In order to determine the roots z5 from the characteristic
equations it is necessary to expand these equations in powers of Zj.
This is done in the following sections.

1. Orthotropic Core. This case is obtained by expanding
equation (13) which results in the following eighth-order polynomial in

z: (j =1 to 8)

J

8 ) 5 L 3 2
CgZ. + CgZ3 + Cgz. + CpZ: + C3Z% + CozZs + C1z. + ¢ = 0 21
825 623 52 42 323 225 125 0 (21)

The coefficients cj are given below in terms of the primed and

unprimed parameters for n > 1 and 0 < n < 1, respectively.
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For n>1

e |

ce =;]12— [Ts - rxry(l ;“)(kx IORES (l—é—l)]

es = (75)(5)

Ci = (kg-2n27) -7 (L+gry) (1+hr,) - (1+gry)+( )(¢rxr ~hr,-n?r,) (222)
e

cp=- 2‘¢s+(kx-2nzr)(1+grx)(1+hry)-[ﬁ2(1+grx)+h(1+gry)+n2rxh(l%¥ﬂl

c1 = -n® (Legrx) (L+hry) (Z)

co = n"(1+gry) [¢ (1+hry)-nh] )

For 0 <n<xl1
\
cs=-rnizy (13
e U) 2.2 (1'H)
Cg =TS rxry( 5 (k -2n“n<t)+r 5

9(17“) (%)

nr)st-t(leg oy (Leh'ry) - (1og 1)+ (152) (0 hry-h ey -n2n2ey)

le}
w
Il
1
[n]
5
2]

¢]
=)
1]
~
=
-
N
:3

cz==‘{¢'s'+(k'—2n2n2r)(1+g'r;)c1+h'r')

—[ 2(1+g'r )+h'(l+g T )+n n2r h'( u)]}

cy =-(l+g'ry) (1+h'r}',)<i—;>

cp = (l+g'r;<) [o! (1+h'r}',) -n?n2h'] J

(22b)
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The quantities appearing in the coefficients are given by

¢ =@2+n2k,-n*1 o' =" 2+n2nzk}',-nl*nl*r \
g:nz(%l) - sz g' =n2n2(~—1£u) _le'lz

¢ (22¢)
h=n2_x.032 h' :nznz_‘x'alz
s = (1+gr,)r +(l+hry)r 1-u st = (1+ 'T')I"+(l+h'r')r' l—u)

and the remaining parameters are defined by equations (9) and (10).
2. Isotropic Core. For this case, six of the eight roots are

obtained from the bracketed portion of equation (14a) and must satisfy

(j =1 to 6)
cezg + cqz; + cszg + czz§ + clzj +c, =0 (23)
For n>1
co = Lt
n

cy, = 1 - rky + (1 + 3n°r - rX@?)

s = () L

cy = nz{kx'2n2(1+T)+T[n2(kx+ky)+52'3nuT]+Xm£(1‘rkx+2n2rT)}

(24a)

cy = n3(1 + n?r - rxw?) (J%)
m

Cy -n”{(EQ-Fnzky-n”T)(l +1n2r - TXw?2) -n?(n? - x52)}
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cg = -r't )
cy =1 ~r'k;-+r(l +3n2n2r! -r'x'B"z)
cy = -r' &L)
3 73
cy = k;—2n2n2(1+1)+r‘[nznz(k§+k§)+6“2—3n”n“r]+x'm“2(l—r'k§+2n2n2r'r)
cy = (l-+n2n2r' —r'X'E“Z) <A%-
i
Co =-{(B“2+n2n2k§—n”n”1)(l+n2n2r’—r'X'6"2)—n2n2(n2n2-x'572)} J
(24b)
The other two roots are given by the term y5 of equation (14b)
and are

’ ' T —,2
2 2, (1-vXw?) 2.2 , (I-r'x'w'")

= ~_ = 4+
z7 + [ n4nc + TN/ T + /n4n = (25)
; ()@ 7)
2 J\n? 2
3. Beam. This is a special case of either the orthotropic or
isotropic panel solutions and is most directly obtained from equa-
tion (16). Six of the eight roots are determined from (j = 1 to 6)
cez§ + cqz; + 0323 + czz§ + €125 + Co =0 (26)
where
1
Cg = -rir Cp = kx-+ri5"2-+x'm*2(l —riki)
L]
cy =1 -r;k;-+T(1 -r;X'B"Z) c;1 = (1 -rix'm"z)(lg) (27)
m
1
C3 = -I‘;( <>\—3-) Cop = —6'2(1 -1‘;()('6'2)
™
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The roots z; and zg are given by

1 - r}',x'a)"z
z7 = &% T uN (28)
8 ( — u) T,
2 y
F. Relationships Between Aj, Bj, and Cj

The coefficients Ajs Bj, and Cj appearing in equations (5) are
not independent quantities. The relationships between them are deter-
mined by equation (7). As shown below, these relationships differ
according to whether the panel has an orthotropic or isotropic core, or
whether the length-width ratio (n) is zero.

1. Panel. From the third of equation (11), which is just another

form of equation (7), the quantities Bj and C: are related as

J
] T
zjijj - nnijj =0 (29)
where xj and yj are defined by equations (12). For an isotropic core,
xj = yj so that equation (29) becomes
1
[2;C5 - mnByly;) , , =0 0
Ty=Ty=T
From equation (14b) it is seen that ytl 1_t__1=0only for j=7o0r 8
J Tx=Ty=T

so that the bracketed term of equation (30) must be zero for values of

j from 1 through 6. Thus, for the <sotropiec core,
C; = ——-Bj j=1=>6 (31)

where the zy are the six roots of equation (23). For the orthotropic

core, equation (29) gives
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|

X.
Cj =22 —+B, j=1->38 (32)
3 Y5 J

where the zj are the eight roots of equation (21).

In terms of the primed parameters, the third of equation (7) is

_,2 2 1+ 3
-nn(-n?n? + X'w'" + 25)A4 + zjnn( 2“) Ty <ﬂa )Bj

21 - —_—2 a3
Bom (o)) -0 o

Then, using equations (31) and (32), the relation between Aj and Bj is

found to be, for the Zsotropic core

B: 3
Aj o= Tt ow 12 5 <}%>< 2 ) j=1=>6 (34)
(n2n2 - 25 -X'w') 2j/\m°Dg

and for the orthotropic core

1]
vf2.2 2 1-m |—12> X_J - 2 1"'1-1) !
[1 +ry(n n Zj > X'w 1 zJ 5 r B

X . 3
i m DS

(35)

L)

To determine Aj and Cj in terms of Bj when j = 7 or 8 (for the

isotropic core), the second of equation (11) is used

22 (] - nznz 0w s B wral YAy [ ¢ 25 (42) (k- my)] ad \ 4. .
gjeﬁ nen< + x'w' o+ 5~ Ty AJ-+ X3+ 2505 (ry ry) ﬂ3DS BJ 0

(36)
But for an isotropic core, r; = r; =r', and x3 = yg =0 for j =7
or 8. Since the coefficient of Aj is not zero in general, it follows
that
Aj =0 j=7,8 (37)
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for the isotropic core. The first of equation (11) then gives
B, j=17, 8 : (38)

for the isotropic core. Except for the term X'E"z in Aj, the above
relations between Aj, Bj, and Cj’ for the isotropic core, are the same
as in references 4 and 5.

2. Beam. If equation (7) is rewritten in terms of the primed

parameters (so that the column matrix does not contain the width b=w),

the result for n = 0 is -

I ( )
a1yl 1m0 z5 o A4 0

| 3B,

_. 2 1_12 - _ ! 2 |"‘t2 | Ja J =
ZJ(ZJ+X w'") [1 TX(ZJ+X w')] 0 73Ds {— 0 (39)
e ity el 3

0 0 L oys] 2 0

| : yJ T]=O_ 1'[3]:)5

The third of equation (39) gives

But, from equation (16),

! - - ! %l_u> |—|2 =
yjln=o_1 rY[ZJ( z /T ]_O

only for j = 7 or 8. Therefore,

Ci =0 j=1-6 (40)

Thus, the only nonzero Cj are Cy and Cg, and, as seen from equa-

tion (39), they are independent of Aj and Bj.

It is only for values of j from 1 through 6 that the determinant

of coefficients of Aj and Bj is equal to zero (giving eq. (26)).
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Thus, Aj and Bj must be zero for j = 7 or 8.

Aj =Bj =0 j=7,8 (41)

1-6, the second of equation (39) gives

B. 3
1 J>( a ) .
A; = [ry - 3 =1-+6 42
) ( * z§+X'w'2><zj m3Dg ’ “2)

G. Satisfaction of Leading- and Trailing-Edge Boundary

For j

Conditions, and Corresponding Frequency Determinants

Since the relationships between the coefficients Aj, Bj, and Cj
have been determined, w, Q, and Qy can be expressed in terms of one set
of coefficients. The boundary conditions can then be applied to obtain
the frequency equations for the case of the orthotropic core, isotropic
core, or beam.

1. Orthotropic Core. When equations (32) and (35) are used,

equations (5) become, for n > 1 and omitting Sln{gﬂzw elwt

cos| b
8 . )
iy ay 5 0/@)
w(x) = 3 Y e— Bj
m°Dg — J ]
J=1
8 m. (x/a)
Q) = D e B (43)
j=1
8 m. (x/a)
Xj e J
Qy(x) = nn Z ZJ BJ
j=1
! ' . . t t
where xj, STRAT yj are given by equations (12) and aj, aj, bj’ bj

are defined as
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Y3
{ (44a)
1
v 2 1-u\ =253 2 (1+u) o
%] {“ry[(“”) ZJ( )-x' ]}<Y'> 2302 ) *x
J /
2 2 3 ?
bJ = nc - Xws - <T>
(44b)
' 2 _ 2 _
bJ (nn) X'w' X

(The primed quantities are to be used for n < 1.)
Application of the eight boundary conditions (eqs. (4)) to

equations (43) gives the following set of eight homogeneous equations

[
1] @
o

ciij =0 i=1,2, ..., 8 (45)

where for n > 1 the coefficients cjj are:

Clamped Edges at Simply Supported Edges
x=0and x = a at x=0and x = a
—_ e \
c.. = aj 1 aj 1
1j ~ 5. 7+ b. Z.
J bJ Z3 bJ zJ
. - aj "] aj Mj
27 ~ b 7. b. 7.
] bJ Z3 bJ Zj
C3j= l Zj
m. m
. = J .
Cu3 e z5e J
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C5 = ‘bi b_J'Z.
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1
J,
respectively. If the determinant of the coefficients of B; is set

equal to zero, the frequency equation for the panel with an orthotropic

If 0 <n<1, a;, b;, x,, and yj are replaced with a!, b

' 1
j’ 7 st and Yj,

core is obtained.

8x8

le;:] =0 (47)

j
2. Isotropic Core. When equations (31), (34), and (38) are used,

equations (5) become, omitting the terms z;g IE%Z} elwt

6 A

nb 3 1 eﬁ—j (x/a)
w(x) 1304 'E <? + BT> ———ET———-Bj

j=1 !

A x) = (48)
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-

j=1 j='7

Application of the eight boundary conditions (eqs. (4)) to

equations (48) gives the following set of eight homogeneous equations

8
Z'c'iij=0 i=1, 2, . . ., 8 (49)
J=1
where the Eij are not the same as the Cij used in equation (45).
For n > 1, the coefficients Eij are:
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Clamped Edges at Simply Supported Edges at

X =0and a X =0 and a
j=1->6 j=7, 8 j=1-+6 j=7, 8
1 1 1 1 1
q = é+r>—- 0 G+F>z 0
J i/ %5 i/ %3
il m.
— J J
Cys = <r-+ﬁ%> %—— 0] (%-+§L> S—— 0
J J J
c3J = 1 1 zj zJ
m m w m
C, . = J mj mj J
cL+J € e zje zJe

3 (50)

= nn %3 nn 45
€75 ~ z: nn Z: n
j j
m .
= j —. j
_ eIIlJ zJe emJ zZ.¢
8j - nn Z nn on Z nn
j j )

If 0 <n<1, r and bj are replaced with r' and b;, respectively. If

the determinant of the coefficients of Bj is set equal to zero,

the frequency equation for the panel with an isotropic core is obtained.

| =0 (51)
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3. Beam. 1In this case, w, Qy, and are independent of the
X Yy P

y-coordinate,and equations (5) are replaced with

m. (x/a) . \
w(x,t) Z Aje J elwt
J

m. (x/a) .
QX(X,t) = - Bje J elwt ¢ (52)

m, (x/a) .
Qy(x,t) = Z Cje J elmt

It is recalled from the discussion of equation (16) that the above
expressions for w and Q; correspond to the ''beam'" solution and lead to
a sixth-order polynomial in zy = mj/n (given by eq. (26)). For

w = Qy = 0 the above expression for Qy, when substituted into

equations (1), yields the bracketed term of equation (16). The two
roots of this term were called z; and zg (eq. (28)) and, as will be
seen, correspond to the thickness-twist solution for an infinitely wide

panel.

When equations (40), (41), and (42) are used, the above expressions

become (omitting eiwt)
A
6

W(X) = a3 r' + _1_. MB

73D X b! Zj J

s j=1 j
. m

Q(x) = Q2 o'/, > (53)

N
o
3|
.
~
3
<
®
j—
O

Qy (x)
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where

v 2 =12
bJ = (zj + X'w' )

Application of the boundary conditions (eqs. (4)) gives two sets of

homogeneous equatio

.
11 Mm
—

(oK

v~

1]

o

-

—
1]
~

Of the eight roots

ns

1577

Cijcj =0

1]
~1
-
00

(54a)

{(54b)

for z4 (given by eqgs. (26) and (28)) the coeffici-

ents Eij depend only on z; through zg.
by:
Clamped Edges at | Simply Supported Edges
x = 0 and a at x = 0 and a
o \
15 X vz x by} z.
] b5/ i/ %
I <%' LA ) e (rv ! > e
25 x T T - x T .
C,. = 1 Z.
3j J
= ﬁ.
Chi = e z.e ?
J J
_—_— (;. L1 > <rv L1 > ,
5§ © x T pr x Tl
J bJ bJ J
6J - X bJ’ [ I‘x b:} Zje
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The coefficients C:

ij are the same for both sets of boundary conditions

and are:

1
Q>
~
[«+]
i
fa—

77 =
(56)

A n My
Cg7 = € 7> Cgg = ¢€

These coefficients depend only on z7 and zg.
The frequency equation obtained by setting the determinant of the

coefficients of Cy equal to zero is simply
1 1

lcij| - 7 o8

7 = 9 (57)

From equation (28), mvy and mg are given by

<

=25 =% (T_t—ES—_T— j=7,8 (58)

For nonrepeated roots? equation (57) can be satisfied only if

— 2
1 - r;x'w' < 0, so that

—_ 7' l—'2
_my iis 5 - ryX w -1
ZJ—T——I, <l—U ">O j=7,8
T
2 ) y
Then equation (57) becomes
e 10 _ &1 o 55 sin ws = 0

2For repeated roots (zy = zg = 0) the functional form of the

solution changes to Qy(x) = [Cy + Cg(x/a)]eO(x/a). Application of

Qy(O) = Qy(a) = 0 gives 1 gl # 0, proving that z4 = zg = 0 is not a

solution.
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so that

s e e (59)

. e
o N

I
~N =

= £i7n§ = ximm

=

j
By squaring both sides of equation (58), the use of equation (59) yields

_2 -
= =%(%+L7£M) m=1, 2, . .. (60)

which is a special case (n = 0) of the thickness-twist frequency equa-
tion. (See eq. (19).) Note that these frequencies are independent of

the airflow. The mode shape corresponding to equation (60) is

w(x) = Qx(x) = 0

Qgéi) = <§é§7> sinEnﬂ <§)}

and is sketched in figure 3(b) for m = 2.

(61)

The frequency equation for the bending and thickness-shear modes
of the beam is obtained from equation (54a) and is
6%6
€351 =0 (62)
The airflow does affect these frequencies since the zj, j=1-=>26, do

depend on A'.

H. Uncoupled Solution for Simply

Supported, Isotropic Panel

The frequency determinants obtained for the panels (n > 0) determine
the frequencies of the bending, thickness-shear, and thickness-twist

modes. For the simply supported isotropic panel, the information
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describing the thickness-twist motion uncouples from that describing the
bending and thickness-shear motions. These uncoupled results are
presented in the following sections.

1. Frequency Determinant. The frequency determinant for the
isotropic panel is given by equation (51). For the simply supported
edge condition this determinant can be simplified, by manipulating its

rows and columns, to yield

1 1 1 1 1 1 o 0
1
|
@ o o T, & . |
eml em2 em3 emq em5 eme | 0 0
|
i
2 2 2 2 2 2 |
z3 z, Z3 zZy, Zg Zg 0 0
]
|
zfem1 ziem2 zoe™3 zﬁem“ 22e"5 zéema: 0 0
|
(1-Txp2)?2 ' =0 (63)
|
zll' z; zg zt zLS' z'g ; 0 0
1
— — — —_ —
4 my b my 4 M3 b my 4 Mg b mg
z e z,e z, e z, e z e zge | 0 0
________ I_——-__ —_— -
o e | -
0 0 0 0 0 0 1 1 1
|
|
P _
0 0 0 0 0 0o 1 e &M
or
M -
(1 - rXw2)?2 XIG x 6| x (8 - e ’”) =0 (64)

where |6 x 6| is the 6 x 6 subdeterminant of equation (63). Note that
it does not depend on the roots zy(m7) and zg(mg).
From the first term of equation (63) it appears that the boundary

conditions are satisfied for any values of the roots z; when the

J

frequency is such that 1 - rXaZ = 1 - r'x'%'? = 0. However, when

1 - rX@? = 0 the characteristic equation (eq. (14a)), from which the

roots are determined, becomes

2j
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1}
(el

r'(léﬁ-[a;lr' + (z? - n2n? + i%)](z? - n2p2)?

which is seen to have two pairs of repeated roots (zg5 = z7 = nn,

zg = zg = -nn). The form of the solutions for w, Q, and Qy given by
equations (5) is valid only for distinct roots of the characteristic
equation. Thus, equation (64) is not valid at the frequency w2=1/(rx).

For w2 2 1/(rX) equation (64) is valid and becomes

l6 x 6] =0 (652)

= _
(e 8 _ em7) —

t
o

(65b)

The frequencies associated with equation (65b) are the thickness-

twist frequencies. This is shown by considering equation (25)

i S
zj = ==t | (am)? + j=17,8 (66)

For nonrepeated values of z; and zg, equation (65b) can be satisfied

only if
2
_ ty 17t
nznz + 1 r'xX'w Y
1 -y rt
2
is a negative number (i.e., zy = -i8, zg = +id). If such is the case,

equation (65b) becomes

+im$ -imé
e - e

2i sin w6 = 0

which is satisfied by

SO
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N 0o

Ll |
. o

Squaring both sides of equation (66) and using the above solution

for z.

j yields

- 2
@t ()

which is the thickness-twist frequency equation. The original deriva-
tion of this equation (see eq. (19)) was based on A' = 0 (no airflow),
whereas the derivation above is valid for X' > 0. Note that these
frequencies are independent of X\ (dynamic pressure) and therefore
cannot coalesce with the bending or thickness-shear frequencies. (This
is not necessarily so for other boundary conditions or for a panel
having an orthotropic core.)

Numerical results (ch. III) show that as A approaches zero the
frequencies determined from equation (65a) approach the frequencies
given by equation (20a). Thus, equation (65a) gives the frequencies of
the bending and thickness-shear motions.

2. Mode Shapes. For all edges simply supported, equation (49) can

be written as?

3For the first six columns of equation (68), the elements of

column j are obtained from the corresponding elements of column one by

replacing the subscript 1 with the subscript j.
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1 6 , nn
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Use of the relation between Aj and Bj for j =16 (eq. (34))

enables the above equation to be expressed as
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[1-(zj/nn)?]
(1757

[1-(z5/nm)2] "™
(1+75)

N

2 m
zle

nnk
r+(1/by)

nnkeml

r+(1/b])

where

so that

k = ﬂ3DS/nb3.

6 7 8
—
1 : (4 0
I
t
|
L0 0
|
:
|
[ 0 0
|
|
|
!
{0 0
l
|
I
I
1 0 0
|
]
|
|
[ 0 0
1
[}
k1 ozm %
r+(1/bg) i nn nn
I
I = _
— my @
nnke™6 : z,e zge 8
r+(1/bg) | nn nn

6x2  6x1
: Kiz | | A _ 0
! Koo B 0
2x2  2x1

[Ki1l{A;} + [K12]{Bj}

[K21]{A;} + [Kp2]{Bj}

{0}

{0}

Asg

Ag

)

./

(69)

(70a)

(70b)

Replacing bj with n2 - x@? - (zj/n)2 (see eq. (44b)) and noting that

all elements of

[Ky2]

are zero reduces equation (70a) to
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¢ 1is an arbitrary constant.

and so on, where

i 1 1 1 1 1 1 Alw
el "2 g3 e ™S "6 A,
lh V2 ‘\U3 ‘Pq l.U5 wG J Aj <
_ —_ — —_— . \, =
m m n m m
vl ppe™? yge s et yge vge °] | Ay
2 2 2 2 2 2
f%eml zgem2 zgem3 zﬁemL+ z%em5 zée Z \AG
where
_ 1
Yi T —2
1 - rXw 2
+ ner
()
1 - ({—
— nn _
The mode shape for w is then
. & m. (x/a)
_ . hmy 1wt ]
w(x,y,t) = sin - ¢ :E: Aje
J=1
where, for J = 1 (ref. 16, p. 34)
1 1 1 1 1
eﬁé eﬁg eﬁg eﬁg éﬁé
1
Ajy = DTl Uy Uy Us Ve
. m Y iy m,
p,e 2 Pae 3 Yot Yoo Pee ©
2 2 2 2 2
z5 z3 z), zg Zg

. (71)

(72)

(73)

By setting the determinant of the square matrix in equation (71) to

zero, one obtains, with manipulation of both rows and columns,
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1 1 1 1 1 1
m- m. m m; m m,

e ! e 2 e 3 et e ° e"e

2 2
1 _2.2 Z% Zg Z% Zy Z:é Zé
-T — — J— =
( Xw™) 2 m 22 M2 ZZ my 2 my 2 g 2 mg 0 (74)

zj€ " 3€ z,e zge zge
L L " N b L
z, z, Z, Zy, Zg Zg

b my 4 Ty 4 T3 4 T, 4 Mg 4 Mg
zye z,€ Zge z, € zc€ 2g€

Except for the "missing" term (em7 - em8), equation (74) is the same
frequency equation as given by equation (63).
Since equation (74) was obtained by altering columms (as well as

rows) in the determinant of the coefficients of Aj, it is important to

note that
~ . \
1 1 1 1 1 1 Ay 0
m m. i} i, m m
e ! e 2 e 3 e e ° e"e Ay 0
2 2 2 2 2 2
2| ® Z, Zy zZy, Zg Zg Aj 0
(1-rXw) 2 m 2 M 2 m 2 m, 2 2 m ) A9 (
ziel zye 2 zze 3 zpe t  zie °  zge o] | Ay 0
z? z; zg zﬁ zg zg Ag 0
L ﬁq L ﬁz L fn—3 4 my L mg L —~6
z,e z,¢e 3 z,¢ 5 zge i Ag 0
L \
(75)

If one used equation (75), with an equal sign, the correct frequency
equation for simple support boundary conditions would be obtained (see
eq. (74)). However, the mode shape for w would be incorrect (see
eq. (71)).

The "missing'" term (eﬁ-7 - eﬁé) alluded to after equation (74) can

be obtained from equation (70b), which is rewritten below.
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Ay
B 25 |
2x6 | A3 nn mn B 0
K211} (4 _ B = (76)
Ay z,eM7 zgens || Be 0
As | nn nn_|
kAG

Consider the possibility that w = 0 for all values of the

x-coordinate; then Aj =0 for j =1->6 (in addition to A; = Ag =0

by eq. (37)). Then, the above equation becomes simply

Zz Zg B7 0
T m 77
z7€ 7 Zge 8 Bg 0

giving a frequency equation

1
[

Z7Zg(em8 - em7) (78)

Although equation (78) is satisfied by z7 or zg equal to zero, this
solution cannot be considered valid since, by equation (25), zy =-zg
which makes z7=1zg=0 a repeated root. Thus, for distinct roots, equa-

tion (78) reduces to equation (65b) which is satisfied by m, oo = +imm,

m=1, 2, 3, . . . and again leads to the thickness-twist frequency
equation (eq. (67)).

Because Aj =0 for j =16, equations (34) and (31) show that
Bj = Cj = 0 for j = 1~> 6. The mode shapes given by equations (48) then

reduce to
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wx) =0

Qe (x) = &7/ Bg, (Mo (/2 (79)
Q(x) = ;Zl% M7 (X/2)g i_?] ome (x/a) g
Since z7 = -zg # 0, equation (77) gives
B; - Bg =0 (80)

The use of equations (5), (79), and (80) together with ﬁ} g = +imm,

3

m=1, 2, 3, . . ., then yields
w(x,y,t) =0 )
Qx(x,y,t) = 2By cos ng-sin E%Z-eiwt > (81)
Qy(x,y,t) = (;355) sin m;x cos ngy eith

as the mode shape for the thickness-twist motion. (See fig. 3(a).)

I. Single Differential Equation Approaches

and Comparison with Smirnov's Results

It is seen from equations (21), (23), and (25) that the
characteristic equations for both the orthotropic and isotropic cores
correspond to an eighth-order system of differential equations. In
reference 8, Smirnov obtained flutter solutions for sandwich panels
having isotropic cores; these solutions were derived from a sixth-,
rather than an eighth-order differential equation. The sixth-order
equation is an incomplete description of the panel motion, but for
simply supported edges it does happen to lead to the correct. bending and
thickness-shear solutions. This occurrence is related to the uncoupled

frequency determinant given by equation (63). The connection between
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the sixth-order solution for the simply supported, isotropic panel and
the uncoupled eighth-order solution given by equation (63) is brought
out in the following sectioms.

1. Uncoupled Solution. In general, the solutions for w, Qx’ and
Qy depend on all eight roots (ﬁ&) of the characteristic equation (see
discussion after eq. (5)). For a panel having an isotropic core, how-
ever, equation (37) shows that A; = Ag = 0 even though Bj and Cj are
all nonzero. Thus, in this special case, the solution for w depends
on only six of the eight roots while the complete solution (i.e., for

w, Q., and Qy) still depends on all eight roots (as shown by eqs. (48)).

With Ay = Ag = 0, half the elements in columns 7 and 8 of the

frequency determinant are zero (_ij = Eéj = Egj = céj = 0 1in eqgs. (50),
j =7 and 8). Furthermore, for simply supported edges the elements Egj
and Eﬂj of columns 7 and 8 are proportional to elements E&j and Eéj,

respectively. This leads to the uncoupled frequency determinant

(eq. (63)) wherein my; and Mg are associated with the thickness-twist
frequencies and m; through mg are associated with the bending and
thickness-shear frequencies.

The uncoupling of the thickness-twist solution from the bending and
thickness-shear solution is seen to be caused by two conditions. The
condition A; = Ag = 0 1is a result of the factorable characteristic
equation, (14a), and is due to the isotropic core. The proportionality
of elements in the frequency determinant is due to the simple support
boundary conditions. A change in either of these conditions prevents
the solution from becoming uncoupled. Thus, a clamped isotropic panel
will not have uncoupled solutions, nor will a simply supported

orthotropic panel.
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The fact that Ay = Ag

0 arises from the factorable character-

istic equation suggests that the eighth-order system of differential

equations given by (la), (1b), and (lc) also has a factorable form.

This is shown next.

equations (la), (1b), and (lc) can be written

where

L1

Li12

Li13

Lip

L3s

and

p

2.

Eighth-Order Differential Equation.

The three differential

in the form

Li1 Lio Lis w 0
Lo Loo Loz [4Q ¢ =30 (82)
L33 L3o Lj Qy 0
3
32 32
De. + Df V¥ - N +
( f, fz) X 532 Y 3yZ? %
9
9X
9
oy
33 33 IO 33
ax ay2 ox3 Dg ox at?
o1 Io 1 a2 1 32+(1-u)32 \ 83)
Ds Dg Dg  ot2 DQX ax2 2 ay?2
1 (1 + u) 32
D 2 9xX 9y
QY
33 33 Io 33
- -  —_—
ay ax2 ay3 Ds 3y at?
1 (1 + p) 32
D 2 3X oy
QX
_1 L1 22 0 [32 F(352) 32]
DS DS DQ}’ 53t2 DQy 3),2 2 3x 2 )

is given by equation (2).
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A single differential equation in w, Qy, or Qy is obtained by
expanding the determinant of the matrix [Lij], treating the operational
coefficients as algebraic quantities (ref. 16, p. 117). The general
result is an eighth-order differential operator, Dg, operating on w,
Qx, Or Qy' For an isotropic core (DQx = DQy = DQ) the operators Log
and L3, are equal and the operator Dg factors into the product

Dg = D,Dg (84)

where D, and Dg are the second- and sixth-order differential operators

given by
-1 Io 32> 1 -pu 1
Dy = =~ (1 + =— + = y2 (85a)
1 DS 2 IO 32 2 IO 32
Dg = L ==V - 1+ — =+ [V - — ) ¥2 85b
6 11 DS [DQ < DQ atz DS 3t2 ( )

When the operators D, and Dg are applied to any one of
equations (5) and the results set equal to zero, equations (25) and (23)
are reobtained, respectively, giving the eight roots zj. This approach
has no particular advantage over the method of working directly with
equations (82) since the three simultaneous equations must still be used
to determine the relations between Aj, Bj, and Cj' The formal
expansion of the determinant of [Lij], although lengthyf*does give the
complete eighth-order differential equation. If, however, the two shear

angles (QX/DQX’ Qy/DQy) are eliminated from equations (82) by

“This expansion is given in reference 14 for the case of an
orthotropic panel, but with the face sheet bending stiffness and

rotary inertia neglected.

52



differentiation, only a sixth-order equation in w is obtained. This
is shown in the next section.

3. Sitxth-Order Differential Equation. For an isotropic core
(DQ = DQ = DQ), the sixth-order differential equation in w 1is

X y

obtained by first differentiating equation (1b) with respect to x,
differentiating equation (lc) with respect to y, and adding the
resulting equations together to obtain

I, 2 D
V2 = [1 + 2227 _ S ¢2)s (86)
DQ 3t2 DQ

W), b %)
=lw, - =— +lw - == (87)
(’X %/ \Y P/,

Equation (la) can be written as

where

(Dfl + sz)v”w + NxW yx + N + D, (® -~ V2w) - p =0 (88)

Y,yy T Pq

by noting the identity
DQ(CD - Vzw) = '(Qx’x + Qy,y)

The solution for ¢ in terms of w is easily obtained from equa-
tion (88) and when substituted into equation (86) leads to a sixth-order

differential equation in w

Dg. +Dg I 2 I 2
1 2 o 93 4 o 3 [ _ ]
DS [l * DS (1 * DQ 3t2>:|v W (1 * DQ 3t2> NXW,XX + Nyw,)’}' p

D 2 2
7. 8% g2, __S 6 97 o2 9 g2 g2
1, 212 Vew DQ [}Dfl'Fsz)V w+ Ny ) % w+Ny oy2 Vew - V é] 0 (89)
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Equation (89) corresponds to Dg(w) = 0 (eq. (85b)) since when p
and w are replaced with equations (2) and (5), respectively, equa-
tion (23), giving six of the roots zj, is again obtained. The factor
D, (eq. (85a)) is missing from equation (89) and hence the roots 1z,
and zg, given by equation (25), are not obtained. Also, since equa-
tion (89) is a sixth-order equation, only three boundary conditions per
edge can be specified. Thus, the sixth-order differential equation is
seen to be incomplete, and solutions derived from it alone are, in
general, incorrect.

4. Solutions Based on Sixth-Order Equation. For simply supported
edges the incomplete sixth-order system does happen to lead to the
correct frequency equation for the bending and thickness-shear modes.

This can be shown by introducing a function X defined by®
o = v2X (90)

(The function X 1is used to express the boundary conditions in terms

of a single variable.) Comparison of this result with equation (86)
shows that

I 2 D
- -0 9 _ s o2ly
w (l + DQ 7 DQ V>X (91)

If equation (2) is written as

_ %w | _
P= 3574 (92)

The symbol X corresponds to Smirnov's X (ref. 8) and is

distinct from the X used herein for the rotary inertia parameter.
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where q 1is the aerodynamic loading, equations (88), (90), (91), and

(92) can be combined to give a sixth-order differential equation in X.

-Ip 32 Ds - 32 32 Io 32 Dg —
Do |l +1~T{— —5+== V2| VX + (Ny —+N, — |1 + == Z— - = ¥2
s[ t T(DQ 3t2 Dy X 3x2 Y ay2 +DQ 3t2 Do X

32 32 < Io 32 Dsg

“Io 2= VX 4+pp — (1+0> -2 V2)X-G=0 93
© 3t2 m ez Dq 3t2 Dq 1 (93)

When the rotary inertia terms [IO(BZ/BtZ)] are dropped, and T is
neglected with respect to one, equation (93) reduces to the differential
equation used by Smirnov (ref. 8). Replacing q with the aerodynamic

loading term [(-2q/B) (3w/3x)] and setting
6

X = ZA_jeﬁj (X/a)sin _n_gl etwt (94)
j=1
in equation (93), once more leads to equation (23) for six of the roots
Zj5 again, zy and zg are not obtained.
If, for simply supported edges, boundary conditions (4b) and (4d)
are combined (so as to have three rather than four boundary conditions),

the following modified boundary equations are obtained.

at x = 0 and a at y = 0and b
w=20 w=20 (95a)
w,xx =0 Woyy = 0 (95b)
e Qx *Q ) =0 o (Qpy Q) =0 (95¢)
DQ X,X Y,y DQ Yoy X,X
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These three boundary conditions per edge are satisfied along the panel

boundary provided the function X is required to satisfy
X =vX =V =0 (96)

along the boundary.®
Applying equations (96) to equation (94) yields the following

relationships between the six A..

J
[ 1 1 1 1 1 1] (&) (0}
el M2 E &M &S &6 A, 0
Z, z% zg zﬁ z% zé J Z@ —J 0 (o7)
zfeﬁ1 zg_eﬁ2 z3eﬁ-3 zieﬁh zéeﬁ-5 zéeﬁ-6 A, r 0 (
z? z; zg zt z: ZZ Ag 0
_zL{eﬁ1 zZeﬁ2 zaeﬁ3 zqeﬁ'+ zLS‘teﬁ-5 zgeﬁéj L Ag \OJ

Note that the determinant of the square matrix in equation (97) is
identical to the uncoupled 6 x 6 subdeterminant of equation (63).
The relation between K5 (corresponding to X) and A;

(corresponding to w) is determined by equation (91) and is found to be

Aj = (1 + TbjA; j=1->6 (98)

6Equations (95c) are satisfied because of the identity

1 o271 voy by =
-]% [LU :[Ov X+DSV X + (Qx’x + Qy,y)] - O
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where equation (44b) has been used. By employing equation (98), it is
possible to manipulate the rows of equation (97) so as to reobtain
equation (71) which was originally derived from the complete eighth-
order system.

Equation (97) depends on only six roots, and these are the same
roots as are given by equation (23). Thus, the sixth-order equation,
used with the modified simple support boundary conditions, does predict
the correct solution for the bending and thickness-shear motion. (Note
that the sixth-order equation does not predict the thickness-twist
solution.) For other boundary conditions, however, (several of which
are considered in ref. 8) the bending and thickness-shear motions will
not, in general, be independent of the other two roots given by the
second-order equation (i.e., eq. (85a)). In such cases the sixth-order
system will not give the correct frequency equation. In reference 17,
several other instances are noted where the assumption of core isotropy
has led to the erroneous use of differential equations that are two
orders less than 1s appropriate.

Another instance in which the characteristic equation factors is
when n = 0 (beam behavior). In this case Aj and Bj are related but
are independent of Cj (eqs. (40), (41), and (42)). This reflects the
fact that the '"cylindrical bending' of the sandwich beam is governed by
a sixth-order rather than an eighth-order differential equation (see
discussion after eq. (16)).

The bending and thickness-shear frequency equation for the simply

supported beam (n = 0} is given by equations (55) and (62) as
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6%6
|&..] =0
1)

By manipulation of the rows, this determinant can be reduced to the
determinant obtained from equation (97). Thus, the sixth-order system
correctly predicts the bending and thickness-shear frequencies for both
the simply supported beam and the panel.

For the clamped beam (n = 0) the sixth-order differential equation

also predicts the correct frequency equation. In this case

6 — .
T = E tﬁjemj(x/a)elmt (99)
j=1

and application of

Iop 92 Dg g2 \- dx _ d%
(“bgs'{z“%af T T T (100)
yields,”
6
jz:ldijAj=O i=1,2,. ..,6 (101)
where
_ —t 2 _ _—y 2 2, M
dlj =1-1'X'w -r'zj d2j =1 -T'X'® —r'zj)e J
m.
d3j =23 duj =z5e J > (102)
=73 d . =zl
d5J zj 6 zJe J

7Except for the term (IO/DQ)(az/atz) (rotary inertia) these

boundary conditions are the same as used by Smirnov in reference 7.
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Hence, the corresponding frequency equation predicted by the sixth-order

system is
=0 (103)

From the eighth-order system the bending and thickness-shear
frequency determinant for the beam solution is

6%6
]cijl =0 (104)
(See eqs. (54a), (55), and (62).) The elements Eij

equations (55) and depend on only six of the eight roots for =z.. For

are given by

the clamped beam these elements are seen to be different from the
elements dij predicted by the sixth-order system (eqs. (102)). By
using equation (98) and by manipulating the rows of equation (104),
however, it is possible to reduce the elements of leij' to the corre-
sponding elements of Idij|- Thus, for the beam (n = 0), the sixth-order
system predicts the same clamped bending and thickness-shear frequency
solution as the eighth-order system. (Note that the sixth-order system
does not give the thickness-twist solution.) For n > 0 (panel rather
than beam) the clamped eighth-order solution depends on all eight roots
of the corresponding characteristic equation (see eqs. (49), (50), and
(51)); in this case the sixth-order system does not adequately describe
the motion.

The above results show that for the simply supported Zisotropic
panel and the simply supported or clamped beam, the solution from the
eighth-order system of differential equations uncouples and can be

expressed as a sixth- plus a second-order system. The solution is
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uncoupled in the sense that the sixth-order system predicts the bending
and thickness-shear frequencies while the second-order system indepen-
dently predicts the thickness-twist frequencies. In the approach used
by Smirnov a single differential equation in w corresponding to the
sixth-order system only is obtained. This approach is therefore not
applicable to the general case where the eighth-order system does not

uncouple.
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ITI. COMPUTATIONAL PROCEDURE FOR

OBTAINING NUMERICAL RESULTS

For the type of aerodynamic-force approximation used herein, pairs
of panel frequencies coalesce at certain dynamic pressures, thus form-
ing "'frequency loops'" in the A, @ plane. (See fig. 4.) Below the
peak of a particular loop the two frequencies forming the loop are real
and distinct. In this case the motion of the corresponding modes is
stable. At the peak (i.e., where 09)/3w = 0) the two frequencies have
coalesced; they are still real at this point but are on the verge of
becoming complex. Above the peak the pair of frequencies exist as com-
plex quantities and produce an oscillatory diverging motion termed
flutter (ref. 18, p. 245). The value of A corresponding to the peak
of the lowest loop corresponds to the critical (minimum) flutter
condition and is designated A .. (See fig. 4.)

Points on the frequency loops are combinations of A and w? for
which the roots z3 of the characteristic equation also cause the
corresponding frequency determinant to equal zero. A practical proce-
dure for determining the frequency loops is to fix &% and vary A
between prescribed limits, computing first the roots Z; and then the
frequency determinant D for each A. These steps can be repeated
until a value of A is found that differs from the correct value (i.e.,
D = 0) by only an acceptable amount. (An allowable error in X of
0.01 percent was accepted in calculating the numerical results presented
herein.) By incrementing »?> and repeating the above process one can
systematically obtain the frequency loops. Of course, the same proce-

dure can be used by holding A fixed and iterating to solutions for @2,
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Figure 4.- Frequency coalescence behavior illustrating

critical value of the dynamic pressure parameter.



A. Roots of the Characteristic Equations

In references 4 and 5 the characteristic equation was a
fourth-order polynomial whose roots could be computed analytically. The
characteristic equations obtained herein are eighth- and sixth-order
polynomials (eqs. (21), (23), and (26)) and their roots were computed
numerically, using Bairstow's method as programmed in reference 19. As
a check on the accuracy of the computations, the coefficients of the
polynomial as computed from the roots were compared with the input
coefficients; the coefficients generally agreed to 12 digits or better.
(All computations were performed in double precision arithmetic.)

There is no guarantee that the array of roots returned from the
root finding subroutine will be ordered in a consistent, systematic
manner. For example, when XA = A; the two roots stored in z(1l) and
z(2) may be the most negative and the second most negative roots,
respectively. On the next trial value of X, X = Ay + AX, the roots
stored in z(1) and z(2) may be the second most negative and the most
negative roots, respectively, with the remaining roots ordered in the
same sequence as for A = X; (see fig. 5). Computing the frequency
determinants D(A) and D(X + AX) with the names (i.e., zi; and z,) of
the two most negative roots interchanged when X = A; + A\ 1is equiva-
lent to interchanging columns 1 and 2 of D(XAj; + AX), hence producing a
false change of sign. Since a sign change indicates the existence of a
solution in the interval AA, a consistent, systematic procedure for
ordering the roots must be incorporated in the programming to prevent

the occurrence of false changes in the sign of the frequency determinant.
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P(Zj) = CHARACTERISTIC EQUATION
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The approach used herein was to identify the real and complex roots and
then to sort and name them according to the magnitude and sign of their

real and imaginary parts.

B. Frequency Determinant

Some of the roots Z; will usually be complex, thus causing
elements of columns j of the frequency determinant to be complex also.
Since the coefficients appearing in the characteristic equation
P(zj) = 0 are real, however, complex roots will occur in complex con-
jugate pairs. This allows the frequency determinant to be computed from

a matrix of real numbers. To show this, consider the 4x4 determinant

Ey E, Ej Ey
E1e™  Ene™  Eze"3  Eue™t
D = (105)
Fq F, Fj Fy
Fie™  F,e™  Fge™3  Fue™
where Ej = E(zj) and Fj = F(zj) are analytic functions of
zy = ﬁ&/ﬂ = (aj/ﬂ) + i(Gj/ﬁ) that are real when Zj is real.

(Eq. (105) is of the same form as the frequency determinants derived

herein.) Then if =z; and z, are complex conjugates, let

TZ) a) + i(Sl = ﬁl

—k

= *_ '6 -
Tz, = Wz; = a; - 16) = my

so D becomes
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E(z1) E(z]) E Ey
3 iy i iY
E(z1)e 1 E(z?)e 1 Ege 3 Eye *
D =
F(z,) F(zj) Fs Fi
— — _— p—
F(zl)em1 F(z’f)eml F3em3 qum”

By the principle of reflection (ref. 20), E(zi) = [E(z1)]¥, and so on,

giving
E(z1) [E(z1)]” Ej Ey
E(z)e™  [E(z)e™1*  Eze™ Eye™
D =
F(zy) [F(z1)]* F3 Fy
F(zp)ell  [F(z)e™]*  Fae™  FLe™

If column 2 is added to column 1, the quantity 2 factored from the
new column 1, and the resulting column 1 subtracted from column 2, the

above expression for D simplifies to

R[Ep] I[E1] Ej Ey
R[Eleldl]eocl I[Elelal]eOcl Ege' 3 Eye 2
D= -2i (106)
R[F1] I[F;] F3 Fy
R[Flel(sl]em1 I[Flelél]ed1 Fge'd Fpe

where R and I denote the real and imaginary parts, respectively, of
tht bracketed expressions and where m; = a; + i§; has been used.

Note that D is purely Zmaginary when z3 and z, are real. If z3 and
zy are also a complex conjugate pair (mz3 = m3 = a3z + 183, zy = zg),

then columns 3 and 4 can be manipulated in the same manner to give
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R[E1] I{E1] R[Es] L[E4]

b= (212 R[Eleidl]eal I[Eleidl]eal R[Eseiﬁg]eas I[E3eis3]e“3
R[F;] I[F;] R[F3] L[Fa]

R[Fiei017e%L 1[F,ei%176% R[Fself3]e3 T[Fyel®3]e3

which is a real number.

The above procedure applies to an nxn determinant whose elements
are of the form of equation (105). Thus, the frequency determinants
considered herein can be computed from determinants whose elements are
real rather than complex. This result is useful since it gives one
access to a wider range of available methods for evaluating the
determinants.

The terms eaj and em3 appearing in the frequency determinants
can cause a computer overflow condition for large positive exponents
(i.e., eﬁﬁ may be too large a number for the computer to represent).
A simple way to avoid this problem is to write the elements of the
determinants so that no positive real exponents occur. For example,
consider equation (106) with a; > 0, i3 < 0, and my - a7 > 0. Then,

equation (106) can be written

R[E1] I[E,] Ej Eue_(m“_al)
. - ﬁl_ _
R[E;e:®1] 1[E;e1%1]  Ege 3 ™ Ey _
. Gy O Mp-oj
D= -2i ~(@y-0q)|€ € 7C
R[F;] I[F;] Fj Fye ¢ 0%
R[F,e%1] 1[F,e %1 Fae 371 F

or

D = -2ie"#"O1 4
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where A is the determinant of the 4x4 matrix in the above equation.
Since it is only the sign of the frequency determinant that is of inter-
est (as D passes through zero), it is only necessary to compute A,
which contains no elements having e raised to a positive real power.

It should be noted that some of the elements of the frequency
determinants derived herein involve terms where by, Yjo and z; appear
in the denominator. If one of these quantities passes through zero (as
A or w2 is being incremented) the frequency determinant D will change
sign by passing through plus and minus infinity, rather than by passing
through zero. Thus, the form of the frequency determinant should be
modified so as to prevent D from becoming infinite. This can be done
by multiplying the elements of column j by the appropriate products

of bj, Y3 and Z5 so that none of these three quantities appear in the

denominator of any element.
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IV. NUMERICAL RESULTS AND DISCUSSION

The procedure discussed in chapter III has been used to compute
frequency loops and flutter boundaries for a selected range of param-
eters. These results, which are discussed in the following sections,
indicate the effects and importance of the face sheet bending stiff-
ness, rotary inertia, and orthotropic core shear stiffnesses.

A. Effects of Face Sheet Bending Stiffness

The influence of the two face sheet bending stiffnesses Dg, and
Df, 1is felt through the parameter 1 = (Dg, + sz)/DS. If both face
sheets are identical this parameter becomes t= (1/3){(f/c)/[1+(£/c)]}?
which depends only on the face sheet to core thickness ratio (f = face
thickness and ¢ = core thickness).

In reference 4, flutter boundaries were calculated for sandwich
panels having clamped or simply supported leading and trailing edges and
simply supported side edges. These results, which were from an analysis
that neglected the face sheet bending stiffness, predicted that for both
a square panel (n = 1) and an infinitely wide panel (n = 0, i.e., a
beam) the clamped edge condition gives a lower flutter speed than the
simply supported edge condition when the shear flexibility parameter,

r!', exceeds a value of about 0.2.8

8For an isotropic core and identical face sheets

- La Tl Ol
' = | ————————— =)} == H=—
2(1 - w9 j\a/) \e A&,
where Eg and G, are Young's and the shear modulus of face and core,

respectively.
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That an increase in boundary restraint could lower the flutter
speed was an unexpected result. Indeed, Smirnov's flutter analysis of
the sandwich beam (ref. 7) showed that for 'large'" values of f/c and r'
(f/c = 0.632, r' = w2) the clamped edge condition does give a higher
flutter speed than the simply supported edge condition. Since Smirnov
did not present results corresponding to smaller values of f£/c, it was
not possible to determine whether the difference in the effect of the
boundary conditions predicted by reference 7 (where T > 0) and refer-
ence 4 (where 1t = 0) was due to the '"largeness'" of the f/c chosen by
Smirnov (ref. 7), or whether it was the neglect of T in reference 4.
Neglecting 1t lowers the order of the beam differential equations from
sixth to fourth order (see eq. (26)) and raises the possibility that
f}cifo )\ér(f/c) # Aér(O) (refs. 21 and 22).°

To investigate this possibility, flutter boundaries were computed
from the solutions to the sixth-order beam equations derived herein for
clamped and simply supported edges, and for f/c ranging from 0.0l to
0.632. These results are shown in figure 6 where the variation in Aér
with f/c 1is presented for r' = 0, 0.4, and 2.0 (with ki = X' =0,
i.e., no in-plane load, and rotary inertia neglected). The curves
labeled r' = 0 correspond to panels having an infinite shear modulus,
and in this case the only effect of 1 1is to increase the values of

A computed from the 1 = 0 analysis by the factor (1 + t) (see

1
cr
eq. (26)). (Note that Dg(l + 1) equals the total panel bending stiff-

ness.) For r' = 0.4, the clamped beam has a lower flutter boundary than

9By (f/c) -~ 0 it is understood that (f/c) goes to zero only in the

expression for .
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Figure 6.- Effect of face sheet to core thickness ratio on flutter

boundaries of sandwich beams; n = k; = X' = 0.
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the simply supported beam until £/c = 0.53 where the boundaries cross.
The same situation exists for r' = 2.0 except that the boundaries cross
at a smaller value of f/c. In all cases 1lim Aér(f/c) = Aér(O)

f/c>0
indicating that the flutter solutions to the fourth-order beam equation
presented in reference 4 correctly describe the beam bending behavior
for sufficiently small values of f/c. For values of f/c greater than
zero the face bending stiffness is seen to increase in importance as the
shear flexibility parameter (r') increases.

The behavior of the frequency loops for four points on the =r'=2.0
flutter boundaries of figure 6 are shown in figure 7. These loops are
formed by the lowest two natural frequencies of the beam. The third and
fourth, fifth, and sixth, and presumably all higher frequencies coalesce
at larger values of A'. For A' = 0 (no airflow) the frequencies
behave in the '"usual'" manner, namely that their values are increased by
an increase in boundary restraint. Also, an increase in panel stiffness
(due to increasing f/c) causes an increase in these frequencies. Com-
parison of figures 7(a) and 7(d) indicates that f/c has a larger
effect on the clamped beam frequencies than on those of the simply
supported beam.

For A' > 0 the beam vibrational motion induces an aerodynamic
loading which subjects the beam to a nonconservative force distribution
(ref. 18). The stability of such a nonconservative elastic system is
not necessarily increased with an increase in the forces of restraint.
In reference 23, for example, the destabilizing effect of increasing

deflectional spring support stiffness at panel boundaries was noted for

certain panel configurations. In figure 7 this same type of behavior is
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observed for f/c = 0.01 and f/c = 0.20 where an increase in boundary
restraint from the simply supported (zero moment) to the clamped
(nonzero moment) edge condition is destabilizing.

The variation in Aér with r' 1is shown in figures 8(a) and 8(b)
for f/c = 0.01 and f/c = 0.632, respectively (n = k; = X' = 0). For
f/c = 0.01, the clamped edge condition gives a higher flutter boundary
than the simply supported edge condition when r' is less than about 0.2.
For 0.2 <r' <10 the simply supported beam is more stable than the clamped
beam. The flutter boundaries presented in reference 4, for O0<r' <2
and T = 0 (f/c = 0), are essentially identical to the r' < 2 portion of
the curves in figure 8(a). In figure 8(b), £/c 1is equal to 0.632 and
in this case the clamped boundary is never lower than the simply
supported boundary, although in the range 0.5 < r'< (0.8, they do
coincide. At r' = 72, the curves pass through the solutions obtained
by Smirnov in reference 7.

In reference 5, the analysis of reference 4 (1t = 0) was used to
compute flutter boundaries for a wide range of simply supported panel
configurations. For panels supporting an in-plane tension load in the
airflow direction the theory predicted that an increase in core shear
stiffness (decrease in 1r) could lower A.p. This is illustrated in
figure 9 (taken from ref. 5) which is for n=n =1, ky =T1=X=20,
and ky = -4. (For r = 0, the value kyx = -4 represents a tensile load
with a magnitude equal to the buckling load of the panel at zero dynamic
pressure.) It is seen that A, for = =2 is more than a third
larger than A., at r = 0 (infinite shear stiffness). To determine

whether the face bending stiffness affects this behavior (decrease in
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flutter speed with increase in core shear stiffness), the first seven
frequency loops for the point r = 2, of figure 9, were computed from
the analysis herein for f/c = 0.0l. These results are presented in
figure 10 where it is seen that the first two bending frequencies (Bl
and B2) coalesce at A p = 1231. This is the same value for .y
obtained with T = 0. Thus, the flutter boundary in figure 9 appears
to be unaffected by small, but nonzero, values of f/c (or 1).

B. Effects of Rotary Inertia

In the preceding section the flutter condition corresponded to
the coalescence of the lowest two bending mode frequencies as illus-
trated in figure 10. It was mentioned in the discussion of equa-
tions (19) and (20) that the inclusion of both rotary inertia and shear
flexibility in the analysis admits the two additional motions termed the
thickness-shear and thickness-twist modes. 1In general, both of these
motions produce transverse deflections w(x,y,t) perpendicular to the
panel's undeformed middle surface. In such cases there is the possi-
bility of frequency coalescence from all three types of motion since a
transverse deflection from any of the possible modes will influence the
aerodynamic loading which in turn may change the panel response.

For a simply supported panel with an isotropic core there is no
transverse motion associated with the thickness-twist modes (see
eqs. (81)). In this case, only the bending and thickness-shear modes
interact with the aerodynamics. The typical variation of the in-vacuo

(A = 0) values of these bending and thickness-shear frequencies with the
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rotary inertia parameter, X, is shown in figure 11.1% The first 14

bending frequencies, labeled Bl through Bl4, are nearly independent of
X whereas the first two thickness-shear frequencies, labeled TS1 and
TS2, are approximately inversely proportional to X. (These bending
and thickness-shear frequencies were computed from egs. (20).)

Except for X, the panel parameters used to compute the frequency
curves in figure 11 are the same as used in figure 10, where ¥ = 0.
Thus, the X = 0 values for the bending frequencies of figure 11 corre-
spond to the intersection of the frequency loops with the A = 0 line
in figure 10. For X > 0, the frequency loops of figure 10 are altered
as a result of the thickness-shear modes. This is illustrated in
figures 12(a) to 12(e).

The most striking feature of figure 12(a) (X = 0.002) is that the
fifth bending frequency (B5) has broken away from the sixth bending
frequency (B6). The B6 frequency now coalesces with B7 while BS pre-
sumably coalesces with some higher frequency mode. Note that for Xx =0
(fig. 10), the first frequency loop determines X., since each succeed-
ing loop coalesces at successively larger values of A. Of the first
six frequency loops shown for X = 0.002 (fig. 12(a)) the first loop

still coalesces at a smaller A than the others. However, each

10For panels having identical faces, and cores which are light
compared to the face sheet weight, the rotary inertia parameter is

given, approximately, by
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succeeding loop does not coalesce at successively larger XA (note
B12-B13). This raises the possibility that A.. may be determined by
some still higher frequency modes.

Increasing X to 0.004 results in additional changes in the modes
which coalesce. As shown in figure 12(b), the Bl mode has now broken
away from B2. In addition the first thickness-shear natural frequency
(TS1) is near the B12 frequency, with which it coalesces. Of the seven
frequency loops shown the fifth loop (formed by B10 and Bll) coalesces
at a smaller A than the others. An increase in X to 0.006
(fig. 12(c)) again changes the pattern and the fourth loop (formed by
B8 and B9) coalesces at the smallest A.

When X 1is increased to 0.008 (fig. 12(d)) the B8 and TS1
frequencies coalesce and become complex at XA = 616. Note that this 1is
50 percent less than Aoy for X = 0 (fig. 10). However, when X 1is
increased to 709, these frequencies become real again, making the motion
of the corresponding modes stable. The motion remains stable until a
second instability region is reached at X = 995. This type of behavior
(region of stability bounded above and below by unstable regions) was
also noted in reference 23 for orthotropic panels mounted on
deflectional spring supports.

For X = 0.010 (fig. 12(e)) the in-vacuo values of the Bll and TS2
frequencies are nearly equal. As A increases to about 320 they become
equal but remain real (i.e., the corresponding modes vibrate at the same
frequency but are stable). The vibrations of these modes remain stable

until A is increased to 1042 where their frequencies finally coalesce.
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This frequency crossover behavior, with the frequencies remaining real,
is similar to results obtained in reference 24 for panels covering an
enclosed cavity.

Another effect of the rotary inertia is that it makes the solution
for Aqr dependent on ky. This differs from the solution of refer-
ence 4 where the frequency and cruossflow loading terms always grouped
in the characteristic equation as w2 + nzky, a change in k, merely

shifting the frequency loops along the w2

axis. This unique grouping
does not occur for X > 0 (see eqs. {(22c), (24), and (27)).

The sensitivity of the frequency loops to ky for X = 0.010 is
indicated by comparing figure 12(e) with figure 13. The only difference
in the parameters selected for these figures is that ky = 0 in fig-
ure 12(e) whereas ky = -4 (tension load) in figure 13. One effect of
the change from ky = 0 to ky = -4 is that the in-vacuo bending fre-
quencies are increased from W2 to approximately w2 + 4. The in-vacuo
thickness-shear frequencies, however, are essentially unaffected by this
change in ky. The frequency loops for both values of ky are quite
similar, being formed by the same frequency pairs and coalescing at
corresponding values of X that differ by less than 2 percent. Thus,
at least for the parameters considered, the crossflow loading term ky
has only a minor effect on frequency coalescence.

C. Effects of an Orthotropic Core

One of the effects of an orthotropic core (ry # ry) is illustrated
in figure 14, where ryx = 2.0 and ry = 0.5 (all other conditions are the
same as in fig. 12(d)). It is seen that the thickness-twist frequencies

(TT1, TT2, and TT3) are no longer independent of A and that
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Figure 13.- Effect of crossflow loading on frequency loops of
figure 12(6); n=mn= 1, r =2, kX = -4, k}’ = _4’

£/¢c = 0.01, X = 0.010; simply supported edges.
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they now coalesce with the bending frequencies. For this particular
choice of parameters it is also seen that the first two thickness-shear
frequencies (TS1 and TS2) do not coalesce with their adjacent bending
frequencies. Their behavior is now similar to the first bending
frequency.

In the remaining examples of panels having orthotropic cores the
rotary inertia has been neglected (X = 0) and Acp 1is determined from
the coalescence of the lowest two bending frequencies. This facilitates
the calculation of A., so that the general effects of changes in core
orthotropy can be determined with much less numerical computation.

Figure 15 shows the variation in the flutter dynamic pressure
parameter (Ao OT Acy) with length-width ratio (n = a/b) for three
values of the shear flexibility parameter ry, (or r;) and with r,

(or ri) held constant. All results are presented in terms of param-
eters defined by the shortest panel dimension (length or width). Thus,
for a/b < 1 the primed parameters (defined by a) must be used whereas
for a/b > 1 the unprimed parameters {(defined by b) must be used. The
solid curves are from the exact solutions derived herein and were com-

puted with f/c = 0.01 in the equation for rt. For the isotropic core

!

Tx

(ry =1 = r!) the flutter boundary coincides with the results of
X y

y,
references 4 and 5 wherein the face sheet bending stiffness was
neglected (t = f/c = 0). The flutter boundaries for the orthotropic
cores (ry 2 ry) bracket the boundary for the isotropic core except at

a/b = 0 where the solution is independent of Ty (see eqs. (26), (42),

and (53)). The dashed curves in figure 15 are from the two-mode
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Figure 15.- Comparison of flutter boundaries for simply supported

panels as predicted by two-mode Galerkin solution and exact

solution; kyx = ky =xX=0,n=1, u=0.3.
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Galerkin solution of reference 9.!! This approximate solution predicts
the correct trends for the range of parameters shown but underestimates
the exact solutions by a considerable amount.

The frequency loops for the square panel having ry = 0.4 and
Ty, = 0.2 (peak of solid and dashed boundaries in fig. 15) are shown in
figure 16. The loop predicted by the two-mode Galerkin solution is
symmetric about a line midway between the two in-vacuo frequencies
(A = 0), whereas the exact loop leans to the right and coalesces at a
considerably larger value of A. Note that the Galerkin solution
correctly predicts the in-vacuo frequencies because the two modes used
in the Galerkin solution are the exact mode shapes for A = 0.

Figure 17 indicates the variation in A, with changes in the
core shear flexibilities (ry, ry) for a square panel. The solid and

dashed curves are for clamped and simply supported leading and trailing

edges, respectively. These curves show the variation in M., with r

y
for ry = 0.4. The circular symbols locate solutions for isotropic
cores and indicate changes in A,y with changes in r, for
Ty = constant. By noting the changes that occur in A.. as 71y and Ty

are varied, from initial equal values to final equal values, one can

determine the relative importance of rx and Ty.

111n reference 9 this two-mode solution was derived for the more
general case of a panel having both orthotropic bending and orthotropic
shear stiffnesses. The results shown in figure 15 are for isotropic
bending stiffness and the corresponding two-mode solution, in terms of

the notation used herein, is given in appendix D.
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Figure 16.- Comparison of frequency loops for a simply supported panel

having an orthotropic core, as predicted by two-mode Galerkin and
exact solutions; n =n =1, ry =

u = 0.3.
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Figure 17.- Variation in Acy with crossflow shear flexibility; n=n=1,

ky = ky = X =0, £f/c = 0.01, u = 0.3; side edges simply supported.
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For example, consider the simply supported panel. Starting at
Tx =Ty = 0.2, Ay equals 325. 1If one follows the path ry = constant
to rx = 0.4, Ty = 0.2 to Ty = 1.0 (along the ry = 0.4 curve), and
finally r, = constant (i.e., 1.0) to r = 1.0, A, ends up at 153, a

y X
change in A., of 172 (53 percent). Of this amount, 29 percent is due
to the change in ry and 24 percent is due to the change in Ty. Thus,
for a square panel, the two shear flexibility parameters appear to be of
comparable importance.

There is apparently no experimental flutter data for sandwich type
panels available for comparison with the results predicted by the theory
presented herein. The validity of the theory's representation of
orthotropic cores such as honeycomb, however, appears to be established

by the comparison between experimental and theoretical vibration results

reported in reference 25.

96



V. CONCLUDING REMARKS

On the basis of static aerodynamic theory, an exact solution is
obtained for the supersonic flutter of flat rectangular, biaxially
stressed sandwich panels. The airflow is assumed to be parallel to
simply supported side edges. The leading and trailing edges are either
simply supported or clamped. The mathematical model describing the
panel motion includes terms which account for rotary inertia, face
sheet bending deformations, and transverse shear deformations of an
orthotropic core, such as honeycomb. Numerical results are presented
in graphical form to illustrate the effects of these physical properties
on the flutter solution. For the range of parameters considered, the
following conclusions are noted.

The face sheet bending stiffness has a negligible effect on flutter
if the faces are thin compared to the core thickness. In such cases
flutter boundaries can be adequately predicted by somewhat simpler
theories that treat the face sheets as membranes. The face sheet bend-
ing stiffness becomes more important as the face to core thickness ratio
increases. This is especially true for panels having relatively
flexible cores.

The combined influences of rotary inertia and core shear
flexibility can markedly change the frequency coalescence behavior.
Failure to account for this combined effect can lead to significant
overestimates of flutter dynamic pressure values. The rotary inertia
also causes the flutter solution to be slightly dependent on the

crossflow in-plane loading.

97



The directional shear stiffness properties of the core are of
comparable importance for square panels. As the panel width increases,
the importance of the shear stiffness in the crossflow direction
decreases.

A two-mode Galerkin solution gives the correct trends for the
flutter boundary of a panel having an orthotropic core but significantly
underestimates the exact solution. Also, an existing exact solution for
panels having isotropic cores is shown to be correct only for certain
restricted cases, the solution having been obtained from a differential
equation and boundary conditions which are incomplete.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., 94035, March 1, 1971
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VI. APPENDIXES

The following appendixes include explanatory information concerning
the panel theories of references 14 and 15, the in-vacuo mode shapes,
and the Galerkin solution of reference 9.

A. Stiffness and Inertia Properties

The sandwich panel theory of reference 14 was developed in terms of
orthotropic stiffnesses that are defined by the ratios of various
internal forces and distortions. For example, the bending stiffness
Dy 1is defined as the ratio of moment My to curvature W xx when no
other forces or moments are acting. This approach is applicable to a
wide variety of panel constructions (e.g., honeycomb core, corrugation
stiffened) but requires a separate evaluation of the stiffnesses.

The sandwich panel theory of reference 15 applies to an isotropic
panel construction for which the form of the face sheet and core defor-
mations are specified. The strain energy of the structure is expressed
in terms of the assumed deformations so that differential equations of
equilibrium and their corresponding boundary conditions can be obtained
by a variational procedure. The coefficients of the virtual displace-
ments appearing in the boundary condition equations are expressions

involving various panel distortions (w for example) and the elastic

S XX
and geometric properties of the core and faces. Physically, these
coefficients are the boundary forces associated with the corresponding
virtual displacements. Hence, they can be used to define the panel
stiffnesses.

The approach of reference 15 is easily adapted to define the

stiffnesses for a panel having isotropic face sheets and a core with
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orthotropic shear moduli (G¢,, ch). (The extensional stiffnesses of
the core are neglected.) The expressions for these stiffnesses, defined
in the manner of reference 14, are given in table I.

The sandwich panel theories of references 14 and 15 do not include
inertia forces. Inclusion of the transverse inertia loading is straight-
forward; inclusion of inertia loadings due to longitudinal and rota-
tional motions requires careful consideration of the panel's elastic
deformations, the position of its center of mass, and its elastic axis
location.

The panel deformations (as considered in ref. 15) occurring in the
X, z-plane are illustrated in figure 18. The slope of the panel faces,
dw/dx, is comprised of a core shear contribution (ycx) and an angular
contribution (ucx). The quantities Yoy and ac, are defined with
respect to the core orientation given by the line ab. Alternately,
ow/dx 1is comprised of the angles yx and a,, which are defined with
respect to the line cd drawn between the midpoints of the face sheets.

The angle Yy is related to the transverse shear stiffness DQx’
as defined in the manner of reference 14, by the equation YX==QX/DQX.

Thus
a, = W _ - —— (A1)

gives the angle ay in terms of w and Qx/DQx which are considered to
be unknowns in equations {(1). From figure 18, ox 1is also seen to be
related to the x-components of the displacements of the face midpoints

(u; and u,) by the relation
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TABLE I.- STIFFNESS AND MASS PROPERTIES FOR SANDWICH

PANELS HAVING HONEYCOMB TYPE CORES
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Figure 18.- Deformed panel geometry.
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ag = 212 (A2)
where h 1is the distance between the midpoints of the two faces.
The interpretation of ax and its relation to the elastic axis
can be determined from figure 19. This figure is a plot of the
x-components of the displacements shown in figure 18. The midpoint
displacement of face 1 1is wu;. It is associated with the axial force
in acting on face 1i. The total axial force is Ny = Nx, + Nx, which

is used to define an effective displacement

U1Ef1f1 + qufoz

T = (A3)

The use of equation (A3) to eliminate either u; or u, from

equation (A2) gives

u; = u + dldx
(A4)
u2 =u - dzax
where
Ef f2 )
d; = 2 h
Eflfl + Ef2f2
Eflfl
d2 = Eflfl + Ef2f2 h
q (A5)
£, + £
dl+d2=hzc+_%
g o Wmu o Qx
X - h - X DQx

The virtual work of the axial forces in is

SW = Nx,du; + Nx26u2
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Figure 19.- Elastic axis location and variation of x-component

of displacement across the panel thickness.
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which, if equations (A4) are used, becomes
8W = (Nx; + Nx,)6T + (Nx,dy - Nx,dp)Soy (A6)

Thus, the work due to the axial face sheet loads Ny, and Nx, is equiv-
alent to the work done by the moment of these forces (about the point
defined by d; (or d,)) acting through the angle oy, plus the work
done by the total force le + Nx, acting through the displacement uU.
Hence, the term d; (or dj,) locates the elastic axis of the panel cross
section.

For face i, the virtual work of the inertial forces due to the
x and y components of the middle surface displacements (u; and vj,

respectively) is
a b

Bzui aZVi
Wy = - pfifi 5t2 Suj + 17 SvyJdx dy

x=0"y=0

Inclusion of this term (for both faces) in the analysis of reference 15
yields the following equation of motion for the rotation of a differ-

ential element about the elastic axes perpendicular to the xz-plane.

Q
Ds{w,xxx'+w,xyy-+%§-—ﬁé;1éx,xx-F<E%E) QX’YY]-_(lzu)_%aixi

2 2 u
= (og,£1d7 +pg,£2d3) < (Pryfadz ppy frd) S (D)

The left hand side of this equation represents the restoring moment
about the elastic axis due to the elastic forces. The first term on the

right hand side is the mass moment of inertia (I,) of the face sheets
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about the elastic axis, multiplied by the angular acceleration of the
face sheets about the elastic axis; hence this term can be interpreted
as the moment due to rotary inertia. The last term on the right hand
side arises because the center of mass does not necessarily coincide
with the elastic axis. The quantity (pf2f2d2 - Pflfldl) is equal to
dem(pg,f1 + pfzfz) where d.; is the distance from the elastic axis to
the center of mass of the two face sheets and (pflfl + pfzfz) is the
total mass of the two faces. The acceleration 82u/9t2 1is the
acceleration of the elastic axis in the x-direction.

It is noted that equation (A7) is a particular case of the general

vector equation of motion (ref. 26)

;

3. -
*+ pem X MYy

M, = H
p = Hp

where ﬁp is the moment of applied forces about an arbitrary point p;
ﬁb is the time rate of change of angular momentum about p; gcm is the
vector distance from p to the center of mass of a system of mass m;
and ib is the acceleration of the point p. In equation (A7), point

p corresponds to the elastic axis.

The equation of motion for the x-direction is
9% _
_NX,X + ny,y = [pflfl + pfzfz) g;z-(u - dcmux) (A8)

The term (U - d.pox) is simply the x-component of the center of mass

displacement.

It is seen that equations (A7) and (A8) are dynamically coupled
(i.e., 3%a/3t? and 320,/3t2 appear in both equations). However, for

the case of identical face sheets, or faces which satisfy the relation
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E E
the elastic axis and center of mass coincide and the equations uncouple.
In this case equation (A7) reduces to equation (1b). Hence, the solu-
tions to equations (la), (1b), and (1c) that are obtained herein are
strictly applicable to panels having identical face sheets, or face
sheets satisfying equation (A9). Also, the stipulation that Ny and Ny
are constant assumes that the inertia force due to longitudinal
acceleration of the center of mass is negligible.

It should also be noted that the inertial forces due to the
rotational accelerations of the core and faces about their midpoints
have been neglected. For typical sandwich construction of lightweight
cores and thin face sheets, these inertia contributions are expected to
be negligible compared to the inertia of the face sheets about the

elastic axis.

B. Comments on Solution of Reference 27

It was noted on page 26 that the thickness-shear and thickness-twist
motions are due to the combined influence of core shear deformations
and rotary inertia moments. In reference 27 the flutter analysis of
reference 5 (isotropic core, face bending stiffness and rotary inertia
neglected) was extended to include the effects of rotary inertia.
Unfortunately, the analysis of reference 27 is based on differential
equations that do not properly account for the rotary inertia moments.

The moments due to rotary inertia are proportional to the
acceleration of the rotation of the panel cross sections, for example,

ax’tt = [w’x - (QX/DQX)],tt (see appendix A). In reference 27, however,
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the rotary inertia moments are taken proportional to the acceleration of
the slopes of the panel cross sections, for example, (w’x),tt' The
rotation and the slope of a cross section are not equal unless the

core shear deformation vanishes (DQ = «); hence the analysis in
reference 27 leads to erroneous results since it is based on an
incorrect description of the rotary inertia moments. For example, the
characteristic equation of reference 27 is linear, rather than cubic,

in w? and does not predict the thickness-shear or the thickness-twist
frequencies. Also, the '"bending" frequencies are correct only if the
rotary inertia or the shear flexibility is neglected. Consequently, the

results presented in reference 27 are of questionable value.

C. In-vacuo Bending and Thickness-Shear Mode Shapes

for a Simply Supported Sandwich Beam

The two differential equations governing the beam behavior (n = 0)

are obtained from equation (82).

Ly Lio W 0
= (C1)

Ly: Loo |\ Qx 0

The differential operators Lij; are given by equations (83) except
that all terms involving derivatives with respect to y are omitted.
For simply supported edges at x = 0 and x = a the boundary conditions

are
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1}
o
. o

T @00 (©

w,xx = OJ

Expressions for the transverse deflection w and the shear angle

Yx that satisfy the boundary conditions are

w(x,t) = Ay sin Egi-elwt
{C3)
Q(x,t) Bn mrx _iwt
yx(x,t) = 5 = po—Cos 4 e
QX QX
The above expressions for w and v, also satisfy the differential
equations, provided that
-Tm4+m2k;+m"2 -m Ap 0
3 = (C4)
m(-m2+x'%' %) 1-r) (-n2x'w ) | |2~ B, 0
1°Dg

For the nontrivial case, equation (C4) is satisfied by equating the
determinant of the square matrix to zero. The resulting equation can be

solved for 6“2 and yields the following frequency equation:

2 2[m%+ (tm*-m2ky) (1+rgm2)]
w = = ——— sttt T TR otmm - Gemomeo ST iDL s Lo o DoITEDEST————
%S [1+(rx+X " Im2+reX " (tm"*-m?ky)] * /[1+(r§—x')m2-r;X'(rm”-mzk;)]2+4X'm2

(C5)

As in the case of the panel (n > 0, eq. (20a)) the smaller solution for
6“2 (+¥) gives the frequencies of the bending modes (EEZ), and the
larger solution (-Y ) gives the frequencies of the thickness-shear
modes (E}g).
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The shapes of the bending and thickness-shear modes are obtained
from the relation between Ay and By. This relation, determined from

equation (C4), is

- —
a2
1+ rx(m? - x'5y
al By m
— ! 2 _ [l
DQx ry(m X mB
TS
_
(Cé)
or
L i m -
a _IEIE_ 1 y 2](' +—-12
DQx ry(-Tmt + mTky + Wy
TS

When equations (C6) are used in conjunction with equations (C3), the
following relation between the slope of the beam (W,x) and the shear

angle (v4) is obtained

2
1 2 —t
ry (me - X'wB
¥
X _ TS 7
w
X! w2 - xm?
X “B
TS
or
Y Ty 2
X -2 E - mzk; - "
W x pm2 B
’ TS
It is recalled from appendix A that
WooFax *tovy (C8)

» X
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where oy, 1is the beam rotation about the elastic axis. The transverse
deflection is thus

w = I(ax + yx)dx
and is comprised of a contribution due to rotation and a contribution

due to shear. The proportion of each contribution is determined as

follows:
Ox Yx
w = + W oy dx
Wx W s
B -
2
r {m?2 - X'Gg
w = 1 + TS W dx (C9)
1+ ' (m?2 - x'a! 1+ r [m2 - x'@
B B
J L TS TS/ |

where equations (C7) and (C8) have been used. Thus, the relative
contribution to w (or w,x) produced by the rotation is given by the
first term in the bracket of equation (C9); the second term gives the
relative contribution due to shear. Note that the shear contribution
vanishes for r; = 0 (infinite shear stiffness). Additional information
about the shear and rotational contributions is revealed by writing
equation (C5) in the following form.

2[m*+ (' -m2k,) (1+1,4m2) ]

argx" [m+ (m®-m2k}) (Lergm2)) :1/2>

[1+(rgexIm2+r X' (tm*-m2k}) ] 2

—_2
“
TS

(C10)

[1+(r+x " ImZ+rpX ! (tm*-m?ky) ] <1 + {1 -
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For many practical parameter valuesl? the magnitude of the underlined
fraction in equation (C10) has a value much less than 1.13 In such
cases equation (C10) can be approximated by

2 2[m®+ (tm*-m2ky) (1+rgm?) ]

by ¥ Cl1
B ‘ 2rgX! [m"+(rml’—m2k;() (1+rym?)] ( )
[1+ (rg+X " Im2+ryeX! (rm"’-mzk;()] 1x{1-

[1+(ry+x" )m2+r;(x C(mm*-m2hy) ]2

which in turn leads to

[ + m* - mZky (C12)
and

~ (C13)

12For identical face sheets and f/c < 0.632,

£ 2
1 c
T—g— T < 0.05
1+ =
c

Positive values of the in-plane load parameter are limited by the
buckling value, k; =+ [1/(1 + r;)] (for no airflow). For lightweight

cores and identical face sheets the ratio X'/ri is approximately equal

e o

Numerically, this ratio often has a value considerably less than 1.

to

130ne notable exception is when rirmz >> X'm? > 1.
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where

1 - r;k; + rérmz

o = m2X'
1 + rym?
In many instances o is also much less than 1. For example, if
ky = T = 0 then o = m2X'/(1 + Txm?) < X'/ry which is normally small
compared to 1.
Substitution of the above approximate expressions for the

thickness-shear and bending frequencies into the second of equations (C7)

yields
3
Yy 1 + rem?
_— ~ 1 +
W,X 2 max!t
ZO_'
TS
\ (C14)
1
Yx _ mry
v, x =2 1+ mzr;
B )

where o has been neglected with respect to unity. Since W y =ox+ Yy,
3
and since nmo term on the right hand side of equations (C14) can be less

than zero, the approximate bounds on vy and oy are

for the bending modes (C15)
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—— > 1
for the thickness-shear modes (C16)

— =< 0

The mode shapes resulting from these restrictions on yx and oy are
illustrated in figures 3(c) and 3(d) for the bending and thickness-shear
modes, respectively.

Numerical values for m"z and Yx/w,x as predicted by the
approximate expressions (eqs. (C12), (C13), and (Cl4)) and by the exact
equations ((C5) and (C7)) are compared in table Il for three sets of

parameter values.
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TABLE 11.- COMPARISON OF IN-VACUO BENDING AND THICKNESS-SHEAR

FREQUENCIES AND MODE SHAPES AS PREDICTED BY EXACT AND

APPROXIMATE SOLUTIONS FOR A SIMPLY SUPPORTED BEAM

1 2 3
B 1)
ky 0.0 -1.0 0.0
f/c 0.04 0.04 0.0
X! 0.01 0.01 0.002
Ty 1.0 0.1 0.2
m 2 1 2
Exact 3.203 1.894 8.867
Bending
2 Approximate 3.208 1.910 8.889
Exact 500.8 1109 4511
Thickness-shear
Approximate 504.0 1111 4520
Exact 0.799 0.0894 0.443
Bending
Yx Approximate 0.800 0.0909 0.444
W, x Exact 125.2 110.8 225.6
Thickness-shear
Approximate 126.0 111.0 226.0
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D. Two-Mode Galerkin Solution of Reference 9

In reference 9 a two-mode Galerkin solution for flutter was

obtained for a simply supported panel having:

For isotropic face sheets and an orthotropic core with negligible

1.

2.

3.

4.

Two transverse shear stiffnesses (DQx’ Dg ).
y

Two bending stiffnesses (Dg, Dy).

Two Poisson ratios (uyx, U

A twisting stiffness

D

y

Xy*

).

bending stiffnesses, one can set (ref. 14)

Hx
Dy

ny

(1

U
DS (1 - 1—12)

- )

By use of the above relations, the two-mode solution (in terms of the

notation used herein) is given by

where

p (m)

cl(m)

c2(m)

c3(m)

c4 (m)
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1]

[i2 - j2|V/-p(1)p ()

i and j are integers whose sum is an odd integer and

[—cZ(m) - <%)4 + <%>2 c3(m) + c4(m)]

2

) aw

Lo ([ (2) 5y oo -
[(%)2 i “2]2[@)2% + 0Ty

cl(m)ky - 2n2

cl(m) [@2 + nzky] -n

n

N
—
N1
=

(b1)



The solution for A., (at 3r/3w? = 0) is given by

u
her = 3k 12 - J2|[BQ) - BG) + n*F(i,3)] (02)
where
m\' m\?
c2(m) + (H) - (ﬁ) c3(m)
Em) = cl(m)
and

. .y _ €1(3) - cl(1)
F(1,3) = — 3y

Equations (D1) and (D2) provide an estimate for the flutter

behavior of a simply supported sandwich panel having an orthotropic
core and isotropic face sheets. Note that this solution does not
account for rotary inertia, nor for the face sheet bending stiffness
contribution to lateral equilibrium (i.e., X = 1 = 0).

For X = 0, equation (Dl1) can be solved for %2 and, except for
the absence of 71, yields the same in-vacuo frequency equation as given
by equation (18a). This observation allows equation (Dl) to be written

as

4 2 -2\
_ T . . i
A(@2) = —413‘ |12 - 32| <——J 5 > - g2 (D3)
where e = w2 - (B‘-2 + B?)/Z] is shown in figure 20. The quantity @2
i j gu q i

is the in-vacuo frequency of the ith mode (i.e., m = i in eq. (18a)).

It is seen that A(®@?) is symmetric about the line (mﬁ + B?)/Z.
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Figure 20.- Symmetric behavior of two-mode Galerkin solution.
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